site logo

Fandrindrana tsara indrindra amin’ny rafitra fitahirizana angovo ao amin’ny tobin-jiro photovoltaic mifototra amin’ny mety ho fikorianan’ny herinaratra

Abstract Ny ampahany betsaka amin’ny famokarana herinaratra photovoltaic dia hisy fiantraikany ratsy eo amin’ny fahamarinan’ny rafi-pahefana, ary ny fitahirizana angovo dia heverina ho iray amin’ireo fomba mahomby hanafoanana ireo fiantraikany ireo. Ity lahatsoratra ity dia manadihady ny fiantraikan’ny famokarana herinaratra photovoltaic amin’ny rafitra herinaratra avy amin’ny fomba fijery ny fikorianan’ny herinaratra, ary avy eo dia manadihady ny fiantraikan’ny fitahirizana angovo amin’ny fanakanana ny fitaomana. Voalohany, ny modely fizarana mety sy ny maodely fitahirizana angovo ho an’ny singa ao amin’ny rafi-pahefana dia ampidirina, ary ny fomba fanaovana santionan’ny hypercube latinina sy ny fomba fanaon’ny sequence gram-Schmidt dia ampidirina. Faharoa, natsangana ny maodely fanamafisam-peo marobe, izay nihevitra ny vidin’ny rafitra fitahirizana angovo, ny mety hisian’ny fikorianan’ny sampana tsy voafetra ary ny fahaverezan’ny tambajotran’ny herinaratra. Ny vahaolana tsara indrindra amin’ny asa tanjona dia azo tamin’ny algorithm génétique. Farany, ny simulation dia atao amin’ny rafitra fitsapana node IEEE24 mba hamakafaka ny fiantraikan’ny fahafahan’ny fidirana amin’ny fotovoltaika samihafa sy ny toerana fidirana amin’ny rafi-pahefana ary ny fiantraikan’ny fitehirizana angovo amin’ny rafitra herinaratra, ary ny fanamafisana ny fitehirizana angovo tsara indrindra mifanaraka amin’ny fahaiza-manao photovoltaic samihafa. dia azo.

Key words photovoltaic power generation; Energy storage system; Optimized configuration; Probability power flow; Genetic algorithm (ga)

Ny famokarana herinaratra photovoltaic dia manana tombony amin’ny fiarovana ny tontolo iainana maitso sy azo havaozina, ary heverina ho iray amin’ireo angovo azo havaozina indrindra. Tamin’ny taona 2020, nahatratra 253 tapitrisa kw ny taham-pamokarana herinaratra photovoltaic ao Shina. Misy fiantraikany amin’ny rafi-pahefana ny fiatoana sy ny tsy fahatokisana ny herin’ny PV midadasika, ao anatin’izany ny olana amin’ny fiharatana faratampony, ny fahamarinan-toerana ary ny fanariana hazavana, ary mila mandray fepetra mora kokoa hiatrehana ireo olana ireo ny tambajotra. Ny fitahirizana angovo dia heverina ho fomba mahomby hamahana ireo olana ireo. Ny fampiharana ny rafitra fitahirizana angovo dia mitondra vahaolana vaovao ho an’ny fifandraisana amin’ny fotovoltaika lehibe.

Amin’izao fotoana izao, maro ny fikarohana momba ny famokarana herinaratra photovoltaic, ny rafitra fitahirizana angovo ary ny mety ho fikorianan’ny herinaratra ao an-trano sy any ivelany. Ny fanadihadiana literatiora marobe dia mampiseho fa ny fitahirizana angovo dia afaka manatsara ny tahan’ny fampiasana ny photovoltaic ary mamaha ny fahamarinan’ny fifandraisana amin’ny fotovoltaika. Ao amin’ny fanamafisana ny rafitra fitahirizana angovo ao amin’ny tobim-pamokarana angovo vaovao, dia tokony hojerena tsy ny paikady fanaraha-maso ny fitehirizana optique sy ny fitehirizana rivotra, fa ny toekarena ihany koa ny rafitra fitahirizana angovo. Ho fanampin’izany, ho an’ny fanatsarana ny tobim-pamokarana angovo maro ao amin’ny rafi-pamokarana dia ilaina ny mianatra ny modely ara-toekarena amin’ny fiasan’ny tobin-jiro fitahirizana angovo, ny fisafidianana ny toerana misy ny toerana fiaingana sy fiafaran’ny fantsona fifindran’ny fotovoltaika ary ny fifantenana toerana fitehirizana angovo. Na izany aza, ny fikarohana efa misy momba ny fanamafisam-peo tsara indrindra amin’ny rafitra fitahirizana angovo dia tsy mihevitra ny fiantraikany manokana amin’ny rafi-pahefana, ary ny fikarohana momba ny rafitra multi-point dia tsy tafiditra amin’ny toetran’ny fitehirizana optika lehibe.

Miaraka amin’ny fivoarana goavana amin’ny famokarana angovo vaovao tsy azo antoka toy ny herin’ny rivotra sy ny fotovoltaika, dia ilaina ny manao kajy ny fikorianan’ny herinaratra ao amin’ny rafitra famatsiana herinaratra. Ohatra, ny literatiora dia mandalina ny toerana tsara indrindra sy ny fizarana fahafahan’ny fitahirizana angovo ao amin’ny rafitra herinaratra miaraka amin’ny herin’ny rivotra. Fanampin’izay, tokony hojerena ihany koa ny fifamatorana eo amin’ny loharanon-kery vaovao maro amin’ny kajy ny fikorianan’ny herinaratra. Na izany aza, ireo fandalinana rehetra voalaza etsy ambony ireo dia mifototra amin’ny fomba fikorianan’ny herinaratra voafaritra, izay tsy mihevitra ny tsy fahatokisana ny famokarana angovo vaovao. Ny literatiora dia mandinika ny tsy fahatokisana ny herin’ny rivotra ary mampihatra ny fomba fikorianan’ny herin’aratra mety tsara indrindra mba hanamafisana ny fisafidianana toerana ny rafitra fitahirizana angovo, izay manatsara ny toe-karena.

Amin’izao fotoana izao, samy hafa probabilistic power flow algorithms no natolotry ny manam-pahaizana, ary ny fomba fitrandrahana angon-drakitra momba ny fikorianan’ny herin’aratra tsy mitongilana mifototra amin’ny fomba simulation Monte Carlo dia natolotra tao amin’ny literatiora, saingy ny fomba fiasa Monte Carlo dia tena mahantra. Atolotra ao amin’ny literatiora ny fampiasana ny mety ho fikorianan’ny herin’aratra mba hianarana ny toerana fitahirizana angovo, ary ny fomba fiasa 2 m no ampiasaina, saingy tsy mety ny kajikajy amin’ity fomba ity. Ny fampiharana ny fomba fanaovana santionany hypercube latinina amin’ny kajy ny fikorianan’ny herinaratra dia ianarana ato amin’ity lahatsoratra ity, ary ny fahambonian’ny fomba fanaovana santionany hypercube latina dia aseho amin’ny alalan’ny ohatra isa.

Miorina amin’ny fikarohana etsy ambony, ity lahatsoratra ity dia mampiasa ny fomba fikorianan’ny herinaratra mety hianarana ny fizarana tsara indrindra amin’ny fitehirizana angovo ao amin’ny rafitra herinaratra miaraka amin’ny famokarana herinaratra photovoltaic lehibe. Voalohany, ampidirina ny maodely fitsinjarana ny mety sy ny fomba fanaovana santionany hypercube latinina amin’ny rafitra herinaratra. Faharoa, apetraka ny maodely fanatrarana tanjona marobe raha jerena ny vidin’ny fitahirizana angovo, ny fikorianan’ny herinaratra mihoatra ny mety ho fetra ary ny fahaverezan’ny tambajotra. Farany, ny famakafakana simulation dia atao amin’ny rafitra fitsapana node IEEE24.

1. Probabilistic power flow model

1.1 Modely tsy azo antoka momba ny singa

Photovoltaic, load and generator are all random variables with uncertainty. In the calculation of probabilistic power flow of distribution network, the probabilistic model is explained in the literature. Through the analysis of historical data, the output power of photovoltaic power generation follows BETA distribution. By fitting the probability distribution of load power, it is assumed that load follows normal distribution, and its probability density distribution function is

Sary (1)

Aiza, Pl ny herin’ny entana; μ L sy σ L dia ny fiandrasana sy ny fiovaovan’ny entana.

Ny modely mety ho an’ny mpamokatra mazàna dia mampiasa fizarana teboka roa, ary ny fiasan’ny fizarana hakitroky ny mety dia

(2)

Raha ny P dia ny mety ho fiasan’ny gropy; PG no herin’ny famokarana.

When the light is sufficient at noon, the active power of the photovoltaic power station is large, and the power that is difficult to use in time will be stored in the energy storage battery. When the load power is high, the energy storage battery will release the stored energy. The instantaneous energy balance equation of the energy storage system is

Rehefa mamaly

(3)

Rehefa ny discharge

(4)

The constraint

Sary,

Sary,

Picture, picture

Where, St is the energy stored at time T; Pt is the charge and discharge power of energy storage; SL and SG are the energy of charging and discharging respectively. η C and η D are charging and discharging efficiency respectively. Ds is the self-discharge rate of energy storage.

1.2 Fomba fanaovana santionany hypercube latina

Misy fomba simulation, fomba tombantombana ary fomba famakafakana izay azo ampiasaina handinihana ny fikorianan’ny herin’ny rafitra amin’ny antony tsy azo antoka. Ny simulation Monte Carlo dia iray amin’ireo fomba marina indrindra amin’ny algorithm mikoriana herinaratra azo inoana, saingy ambany ny faharetany raha oharina amin’ny mari-pahaizana ambony. Amin’ny trangan’ny fotoana fakàna santionany ambany, io fomba io dia matetika tsy miraharaha ny rambony amin’ny fizaran-tsarimihetsika mety hitranga, fa mba hanatsarana ny fahitsiana dia mila mampitombo ny fotoana fanaovana santionany. Ny fomba fanaovana santionany hypercube latinina dia misoroka io olana io. Fomba fanaovana santionany amin’ny ambaratonga ambony izy io, izay afaka miantoka fa ny teboka fanaovana santionany dia maneho amin’ny fomba mahomby ny fitsinjarana ny mety ary mampihena amin’ny fomba mahomby ny fotoana fanaovana santionany.

Figure 1 shows the expectation and variance of Latin hypercube sampling method and Monte Carlo simulation method with sampling times ranging from 10 to 200. The overall trend of results obtained by the two methods is decreasing. However, the expectation and variance obtained by monte Carlo method are very unstable, and the results obtained by multiple simulations are not the same with the same sampling times. The variance of Latin hypercube sampling method decreases steadily with the increase of sampling times, and the relative error decreases to less than 5% when the sampling times are more than 150. It is worth noting that the sampling point of the Latin hypercube sampling method is symmetric about the Y-axis, so its expected error is 0, which is also its advantage.

Ny sary

AVIAVY. 1 Fampitahana ny fotoana fanaovana santionany samy hafa eo amin’ny MC sy ny LHS

Ny fomba fanaovana santionany hypercube latinina dia fomba fanaovana santionany misy sosona. Amin’ny alàlan’ny fanatsarana ny fizotran’ny famokarana santionany amin’ny fiovaovan’ny kisendrasendra, ny sandan’ny sampling dia afaka maneho amin’ny fomba mahomby ny fitsinjarana ny fari-pahaizan’ny kisendrasendra. Mizara roa ny dingana fanaovana santionany.

(1) Sampling

Xi (I = 1, 2,… ,m) is m random variables, and the sampling times are N, as shown in FIG. 2. The cumulative probability distribution curve of Xi is divided into N interval with equal spacing and no overlap, the midpoint of each interval is selected as the sampling value of probability Y, and then the sampling value Xi= p-1 (Yi) is calculated by using inverse function, and the calculated Xi is the sampling value of random variable.

Ny sary

Sary 2 diagrama schematic an’ny LHS

(2) Permutation

Ny sandan’ny santionany amin’ny variable kisendrasendra azo avy amin’ny (1) dia nalamina araka ny filaharany, ka ny fifandraisana misy eo amin’ny m variables kisendrasendra dia 1, izay tsy azo kajy. Ny fomba orthogonalization amin’ny sequence gram-Schmidt dia azo ampiasaina mba hampihenana ny fifandraisana misy eo amin’ny sandan’ny santionany amin’ny fari-pahalalana kisendrasendra. Voalohany, misy matrix K×M filaharana I=[I1, I2…, IK]T. Ny singa ao amin’ny andalana tsirairay dia alahatra kisendrasendra manomboka amin’ny 1 ka hatramin’ny M, ary izy ireo dia maneho ny toerana misy ny sandan’ny santionany amin’ny variable kisendrasendra tany am-boalohany.

Positive iteration

Ny sary

A reverse iterative

Ny sary

Ny “sary” dia maneho fanendrena, ny takeout(Ik,Ij) dia maneho ny kajy ny sanda sisa amin’ny fihemorana an-tsipika Ik=a+bIj, ny laharana(Ik) dia maneho véctor vaovao noforonin’ny filaharana singa amin’ny orientation Ik manomboka amin’ny kely ka hatramin’ny lehibe.

Aorian’ny famerenan’ny bidirectional mandra-pahatongan’ny sandan’ny RMS ρ, izay maneho ny fifamatorana, dia tsy mihena, dia azo ny matrix toeran’ny variable kisendrasendra tsirairay aorian’ny permutation, ary avy eo dia azo atao ny matrix permutation amin’ny variables kisendrasendra miaraka amin’ny fifandraisana kely indrindra.

(5)

Aiza, ny sary dia coefficient fifandraisana eo amin’ny Ik sy Ij, cov dia covariance, ary VAR dia variance.

2. Fanamafisana tanjona marobe amin’ny rafitra fitahirizana angovo

2.1 Asa tanjona

Mba hanamafisana ny hery sy ny fahaiza-manaon’ny rafitra fitahirizana angovo, dia apetraka ny asa fanatsarana tanjona marobe amin’ny fiheverana ny vidin’ny rafitra fitahirizana angovo, ny mety ho fetran’ny herinaratra ary ny fahaverezan’ny tambajotra. Noho ny refy samihafa amin’ny tondro tsirairay, dia atao ny manara-penitra fivilian-dàlana ho an’ny tondro tsirairay. Aorian’ny fanamarihan’ny deviation dia eo anelanelan’ny (0,1) ny sandan’ny soatoavina voamarika, ary ny angona manara-penitra dia isa madio tsy misy singa. Raha ny zava-misy marina dia mety hisy ny tsy fitovian-kevitra amin’ny fanamafisana ny tondro tsirairay. Raha omena lanja iray ny tondro tsirairay, dia azo dinihina sy ianarana ny fanamafisana samihafa.

(6)

Aiza, w ny tondro ho optimized; Wmin sy wmax no kely indrindra sy ambony indrindra amin’ny asa tany am-boalohany tsy misy manara-penitra.

Ny tanjona tanjona dia

(7)

In the formula, λ1 ~ λ3 are weight coefficients, Eloss, PE and CESS are standardized branch network loss, branch active power crossing probability and energy storage investment cost respectively.

2.2 Genetic algorithm

Algorithm génétique dia karazana algorithm optimization natsangana amin’ny alalan’ny fakana tahaka ny lalàna fototarazo sy evolisiona momba ny fahaveloman’ny olona mendrika indrindra sy velona amin’ny zavaboary mendrika indrindra. Voalohany amin’ny fanodinkodinana, ny mponina voalohany kaody tsirairay amin’ny anaran’ny olona iray (vahaolana azo atao amin’ny olana), ka ny vahaolana azo atao tsirairay dia avy amin’ny fiovan’ny phenotype genotype, hanaovana safidy araka ny lalàn’ny natiora ho an’ny tsirairay, ary voafidy amin’ny taranaka tsirairay ho amin’ny taranaka manaraka ny informatika tontolo iainana mba hampifanaraka ny olona matanjaka, mandra-mampifanaraka indrindra ny tontolo iainana ny tsirairay, Rehefa avy decoding, dia ny eo ho eo ny vahaolana tsara indrindra ny olana.

In this paper, the power system including photovoltaic and energy storage is firstly calculated by the probabilistic power flow algorithm, and the obtained data is used as the input variable of the genetic algorithm to solve the problem. The calculation process is shown in Figure 3, which is mainly divided into the following steps:

Ny sary

AVIAVY. 3 Fikoriana algorithm

(1) Rafitra fampidirana, angon-drakitra fitehirizana fotovoltaika sy angovo, ary manao santionany hypercube latinina sy orthogonalization ny filaharana Gram-Schmidt;

(2) Ampidiro ao amin’ny maodely kajy ny fikorianan’ny herinaratra ny angon-drakitra voasokajy ary raketo ny valin’ny kajy;

(3) The output results were encoded by chromosome to generate the initial population corresponding to the sampling value;

(4) Kajio ny fahaizan’ny tsirairay amin’ny mponina;

(5) mifantina, miampita ary miova mba hamokatra taranaka vaovao;

(6) Judge whether the requirements are met, if not, return step (4); If yes, the optimal solution is output after decoding.

3. Example analysis

Ny fomba fikorianan’ny herin’ny probabilistika dia simulation sy nodinihina ao amin’ny rafitra fitsapana IEEE24-node aseho ao amin’ny Sary. 4, izay ny haavon’ny malefaka 1-10 nodes dia 138 kV, ary ny 11-24 nodes dia 230 kV.

Ny sary

Sary 4 IEEE24 rafitra fitsapana node

3.1 Influence of photovoltaic power station on power system

Tobim-pamokarana Photovoltaic amin’ny rafitra herinaratra, ny toerana sy ny fahafahan’ny rafitra herinaratra dia hisy fiantraikany amin’ny volavolan-tsarimihetsika sy ny herin’ny sampana, noho izany, alohan’ny famakafakana ny fiantraikan’ny rafitra fitahirizana angovo ho an’ny tambajotra herinaratra, ity fizarana ity dia manadihady voalohany ny fiantraikan’ny hery photovoltaic. toby eo amin’ny rafitra, ny fidirana amin’ny photovoltaic ny rafitra amin’ity taratasy ity, ny fironana ny fetran’ny mety, ny fahaverezan’ny tambajotra sy ny sisa dia nanao ny fanadihadiana simulation.

Araka ny hita ao amin’ny Sary. 5(a), aorian’ny fampifandraisana ny tobim-pamokarana photovoltaic, dia toy izao manaraka izao ny nodes misy fetran’ny fikorianan’ny sampana kely kokoa: 11, 12, 13, 23, 13 mba hampifandanjana ny node node, omena ny voly node ary ny zoro ny phase. vokatry ny stable power grid power balance, 11, 12 ary 23 fa tsy mifandray mivantana, vokatr’izany, nodes maromaro mifandray amin’ny fetra ny mety hisian’ny hery kely kokoa sy bebe kokoa, ny tobim-pamokarana herinaratra photovoltaic dia hiditra amin’ny node miaraka amin’ny fiantraikan’ny fifandanjana dia kely kokoa amin’ny fiantraikan’ny rafitra herinaratra.

Ny sary

Sary 5. (a) ny fitambaran’ny fikorianan’ny herin’aratra mety tsy voafetra (b) ny fiovaovan’ny volkano amin’ny node (c) ny totalin’ny fahavoazan’ny tambajotran’ireo teboka fidirana PV samihafa

In addition to the exceedance of power flow, this paper also analyzes the influence of photovoltaic on node voltage, as shown in FIG. 5(b). The standard deviations of voltage amplitudes of nodes 1, 3, 8, 13, 14, 15 and 19 are selected for comparison. On the whole, the connection of photovoltaic power stations to the power grid does not have a great influence on the voltage of nodes, but the photovoltaic power stations have a great influence on the voltage of a-Nodes and their nearby nodes. In addition, in the system adopted by the calculation example, through comparison, it is found that photovoltaic power station is more suitable for access to the node types: ① nodes with higher voltage grade, such as 14, 15, 16, etc., the voltage almost does not change; (2) nodes supported by generators or adjusting cameras, such as 1, 2, 7, etc.; (3) in the line resistance is large at the end of the node.

Mba handinihana ny fiantraikan’ny teboka fidirana PV amin’ny totalin’ny fahavoazan’ny rafitra herinaratra, ity taratasy ity dia manao fampitahana araka ny aseho amin’ny sary 5(c). Hita fa raha misy nodes manana hery enta-mavesatra lehibe ary tsy misy famatsiana herinaratra mifandray amin’ny tobin-jiro pv, dia hihena ny fahaverezan’ny tambajotra. Mifanohitra amin’izany, ny nodes 21, 22 ary 23 no fiafaran’ny famatsiana herinaratra, izay tompon’andraikitra amin’ny fifindran’ny herinaratra afovoany. Ny tobin-jiro photovoltaic mifandray amin’ireo node ireo dia hiteraka fatiantoka lehibe amin’ny tambajotra. Noho izany, ny pv tobin-jiro fidirana toby dia tokony ho voafidy eo amin’ny faran’ny fandraisana ny hery na ny node misy entana lehibe. Ity fomba fidirana ity dia afaka mampifandanja kokoa ny fitsinjaran-kery ny rafitra ary mampihena ny fahaverezan’ny tambajotra.

Mifototra amin’ireo lafin-javatra telo amin’ny famakafakana ireo valiny etsy ambony, ny node 14 dia raisina ho toy ny teboka fidirana amin’ny tobin-jiro photovoltaic ato amin’ity lahatsoratra ity, ary avy eo ny fiantraikan’ny fahafahan’ny tobin-jiro photovoltaic samihafa amin’ny rafi-pahefana.

Ny sary 6(a) dia manadihady ny fiantraikan’ny fahafahan’ny photovoltaic amin’ny rafitra. Hita fa mitombo ny fivilian-dàlana mahazatra amin’ny herin’ny sampana tsirairay miaraka amin’ny fitomboan’ny fahafahan’ny fotovoltaika, ary misy fifandraisana tsipika tsara eo amin’ny roa. Afa-tsy ny sampana maromaro aseho amin’ny sary, ny fivilian-dàlana mahazatra amin’ny sampana hafa dia latsaky ny 5 avokoa ary mampiseho fifandraisana tsipika, izay tsy noraharahiana noho ny fanamorana ny fanaovana sary. Hita fa misy fiantraikany lehibe amin’ny herin’ny fifandraisana mivantana amin’ny teboka fidirana photovoltaic na sampana mifanila ny fifandraisana amin’ny fotovoltaika. Noho ny fifindran’ny tsipika fifindran’ny herinaratra voafetra, ny tsipika fampitana ny habetsaky ny fanorenana sy ny fampiasam-bola dia lehibe, noho izany ny fametrahana tobin-jiro photovoltaic, dia tokony handinika ny famerana ny fahafahan’ny fitaterana, misafidy ny fiantraikany kely indrindra amin’ny fidirana amin’ny tsipika mankany amin’ny toerana tsara indrindra, ankoatra, Ny fisafidianana ny fahaiza-manao tsara indrindra amin’ny tobin-jiro photovoltaic dia handray anjara lehibe amin’ny fampihenana izany fiantraikany izany.

Ny sary

Sary 6. (a) Ny fivilian-dàlana marim-pototra herin’ny sampana (b) ny mety ho fivoahan’ny herin’ny sampana (c) ny fahavoazan’ny tambajotra manontolo amin’ny fahafahan’ny photovoltaic samihafa

AVIAVY. 6(b) mampitaha ny mety hisian’ny hery miasa mihoatra ny fetran’ny sampana tsirairay eo ambanin’ny fahafahan’ny tobin-jiro pv samihafa. Afa-tsy ireo sampana aseho amin’ny sary, ny sampana hafa dia tsy mihoatra ny fetra na ny mety ho kely dia kely. Raha ampitahaina amin’ny AFI. 6(a), dia hita fa tsy voatery mifandray ny mety hisian’ny tsy fetezana sy ny fivilian-dàlana mahazatra. Ny hery mavitrika amin’ny tsipika miaraka amin’ny fiovaovan’ny fivilian-dàlana lehibe dia tsy voatery ho tsy voafetra, ary ny antony dia mifandray amin’ny fitarihana fampitana ny herin’ny famoahana photovoltaic. Raha mitovy amin’ny fikorianan’ny herin’ny sampana tany am-boalohany izany, ny herin’ny photovoltaic kely dia mety hiteraka tsy ferana ihany koa. Rehefa lehibe be ny herin’ny pv dia mety tsy hihoatra ny fetra ny fikorianan’ny herinaratra.

In FIG. 6(c), the total network loss of the system increases with the increase of photovoltaic capacity, but this effect is not obvious. When the photovoltaic capacity increases by 60 MW, the total network loss only increases by 0.5%, i.e. 0.75 MW. Therefore, when installing pv power stations, network loss should be taken as a secondary factor, and factors that have a greater impact on the stable operation of the system should be considered first, such as transmission line power fluctuation and out-of-limit probability.

3.2 Impact of energy storage access on the system

Fizarana 3.1 Ny toeran’ny fidirana sy ny fahafahan’ny tobin-jiro photovoltaic dia miankina amin’ny rafitra herinaratra