Yakakwana yekumisikidzwa kwesimba rekuchengetedza sisitimu mune photovoltaic magetsi chiteshi zvichienderana nekugona kuyerera kwesimba

Abstract Chikamu chepamusoro chekugadzira simba re photovoltaic chichava nemigumisiro yakaipa pakugadzikana kwesimba remagetsi, uye kuchengetedza simba kunoonekwa seimwe yenzira dzinoshanda dzekubvisa migumisiro iyi. Iri pepa rinoongorora maitiro ekugadzira simba re photovoltaic pane simba remagetsi kubva pakuona kwekuyerera kwesimba, uye rinoongorora mhedzisiro yekuchengetedza simba pakudzivirira pesvedzero. Chekutanga, mukana wekugovera modhi uye modhi yekuchengetera simba yezvikamu musimba system inounzwa, uye iyo yechiLatin hypercube sampling nzira uye gram-Schmidt sequence normalization nzira inounzwa. Chechipiri, iyo yakawanda-inotarisirwa optimization modhi yakamiswa, iyo yaitarisa mutengo weiyo simba rekuchengetedza sisitimu, iyo isingabvumirwe mukana webazi rekuyerera kwesimba uye netiweki kurasikirwa kwegidhi remagetsi. Iyo yakakwana mhinduro yechinangwa chebasa yakawanikwa neiyo genetic algorithm. Chekupedzisira, iyo simulation inoitwa muIEEE24 node test system yekuongorora pesvedzero yeyakasiyana photovoltaic yekuwana kugona uye yekuwana nzvimbo pane yemagetsi system uye mhedzisiro yekuchengetedza simba pane yemagetsi sisitimu, uye iyo yakakwana yekuchengetedza simba gadziriso inoenderana neyakasiyana photovoltaic simba. inowanikwa.

Mazwi akakosha photovoltaic simba rekugadzira; Simba rekuchengetedza hurongwa; Optimized configuration; Zvichida simba rinoyerera; Genetic algorithm (ga)

Photovoltaic simba rekugadzira rine zvakanakira girinhi kuchengetedzwa kwezvakatipoteredza uye inovandudzwa, uye inoonekwa seimwe yeanogona kudzokororwa simba. Pakazosvika 2020, China yakawedzera kuiswa simba rekugadzira magetsi emagetsi asvika 253 miriyoni kw. Kupindirana uye kusava nechokwadi kwesimba guru rePV rinokanganisa hurongwa hwemagetsi, kusanganisira nyaya dzekuveura ndebvu, kugadzikana uye kurasa chiedza, uye grid inoda kutora matanho anoshanduka kuti agadzirise nyaya idzi. Kuchengetedzwa kwesimba kunoonekwa senzira inoshanda yekugadzirisa matambudziko aya. Iko kushandiswa kwesimba rekuchengetedza sisitimu kunounza mhinduro nyowani kune yakakura-yakakura photovoltaic grid yekubatanidza.

Parizvino, kune tsvakurudzo dzakawanda pamusoro pe photovoltaic simba rekugadzira, simba rekuchengetedza simba uye mukana wekuyerera kwemagetsi kumba nekune dzimwe nyika. Nhamba huru yezvidzidzo zvemabhuku zvinoratidza kuti simba rekuchengetedza simba rinogona kuvandudza chiyero chekushandiswa kwe photovoltaic uye kugadzirisa kugadzikana kwe photovoltaic grid connection. Mukugadzirisa kwesimba rekuchengetedza simba mumagetsi matsva emagetsi, kutarisa kunofanira kubhadharwa kwete chete kune hurongwa hwekutonga hwekuchengetedza optical uye kuchengetedza kwemhepo, asiwo kuhupfumi hwesimba rekuchengetedza simba. Uye zvakare, kuitira optimization yeakawanda emagetsi ekuchengetedza simba zviteshi musimba remagetsi, zvinodikanwa kuti udzidze yehupfumi modhi yekushanda kwesimba rekuchengetedza magetsi zviteshi, kusarudzwa kwesaiti yenzvimbo yekutanga uye yekupedzisira nzvimbo yephotovoltaic transmission chiteshi uye kusarudzwa kwenzvimbo yekuchengetedza simba. Nekudaro, iyo tsvakiridzo iripo pamusoro peiyo yakakwana kumisikidzwa kwesimba rekuchengetedza sisitimu haitarise iwo chaiwo maitiro emagetsi sisitimu, uye tsvakiridzo yeakawanda-point system haisanganisire yakakura-yakakura optical yekuchengetedza maitiro ekushanda.

Nekukura kwakakura kwekusava nechokwadi kwesimba idzva rekugadzira magetsi senge simba remhepo uye photovoltaic, zvinodikanwa kuverenga kuyerera kwemagetsi emagetsi emagetsi mukuronga kwekushanda kwesimba remagetsi. Semuenzaniso, mabhuku anodzidza nzvimbo yakakwana uye kugoverwa kwesimba rekuchengetedza simba mumagetsi emagetsi ane simba remhepo. Pamusoro pezvo, kuwirirana pakati pezvizhinji zvemasimba matsva kunofanirwawo kutariswa mukuverenga kwekuyerera kwesimba. Nekudaro, zvese zviri pamusoro zvidzidzo zvakavakirwa pane deterministic simba kuyerera nzira, izvo zvisingatarisire kusava nechokwadi kwesimba idzva rekugadzira. Zvinyorwa zvinotarisa kusavimbika kwesimba remhepo uye inoshandisa iyo probabilistic yakakwana yekuyerera kwemagetsi nzira yekukwiridzira saiti kusarudzwa kwesimba rekuchengetedza sisitimu, iyo inovandudza hupfumi hwekushanda.

Parizvino, nzira dzakasiyana dzekuyerera kwesimba dzakatsanangurwa nenyanzvi, uye nzira dzekuchera dhata dzekuyerera kwesimba risingaite zvichienderana neMonte Carlo simulation nzira yakatsanangurwa mumabhuku, asi kuenderana nenguva kweMonte Carlo nzira yakaipa kwazvo. Inokurudzirwa mumabhuku kushandisa probabilistic optimal optimal power flow kuti idzidze nzvimbo yekuchengetedza simba, uye 2 m point nzira inoshandiswa, asi kuverenga kwekuenzanisa kweiyi nzira hakuna kunaka. Kushandiswa kwechiLatin hypercube sampling nzira musimba rekuyerera kwekuverenga kunodzidzwa mubepa rino, uye hukuru hweLatin hypercube sampling nzira inoratidzirwa nemienzaniso yenhamba.

Zvichienderana netsvagiridzo iri pamusoro, bepa rino rinoshandisa nzira yekuyerera kwesimba ye probabilistic kudzidza iyo yakakwana yekugoverwa kwesimba rekuchengetedza musimba remagetsi ine yakakura-yakakura photovoltaic simba rekugadzira. Chekutanga, iyo mukana wekugovera modhi uye chiLatin hypercube sampling nzira yezvikamu musimba system inounzwa. Kechipiri, iyo yakawanda-chinangwa optimization modhi inotangwa tichifunga nezve mutengo wekuchengetedza simba, kuyerera kwesimba pamusoro pemuganho mukana uye kurasikirwa kwetiweki. Chekupedzisira, ongororo yekunyepedzera inoitwa muIEEE24 node test system.

1. Probabilistic power flow model

1.1 Kusagadzikana modhi yezvikamu

Photovoltaic, mutoro uye jenareta ese akasiyana akasiyana asina kugadzikana. Mukuverenga kwe probabilistic simba kuyerera kwekugovera network, iyo probabilistic modhi inotsanangurwa muzvinyorwa. Kuburikidza nekuongororwa kwezvakaitika kare, simba rekubuda rekugadzira photovoltaic rinotevera kugoverwa kweBETA. Nekukodzera mukana wekugovera simba remutoro, zvinofungidzirwa kuti mutoro unotevera kugovera kwakajairika, uye mukana wayo wekugovera density basa

Mufananidzo (1)

Where, Pl is the load power; μ L and σ L are the expectation and variance of load respectively.

Iyo mukana wemodhi yejenareta inowanzotora maviri-mapoinzi kugovera, uye mukana wayo we density kugovera basa

(2)

Where, P is the probability of normal operation of generator; PG is the output power of the generator.

When the light is sufficient at noon, the active power of the photovoltaic power station is large, and the power that is difficult to use in time will be stored in the energy storage battery. When the load power is high, the energy storage battery will release the stored energy. The instantaneous energy balance equation of the energy storage system is

Kana uchichaja

(3)

Kana kubuda

(4)

The contraindication

Mifananidzo,

Mifananidzo,

Mufananidzo, mufananidzo

Where, St is the energy stored at time T; Pt is the charge and discharge power of energy storage; SL and SG are the energy of charging and discharging respectively. η C and η D are charging and discharging efficiency respectively. Ds is the self-discharge rate of energy storage.

1.2 Latin hypercube sampling nzira

Kune nzira yekufananidza, nzira yekufungidzira uye nzira yekuongorora iyo inogona kushandiswa kuongorora sisitimu yekuyerera kwesimba pasi pezvinhu zvisina chokwadi. Monte Carlo simulation ndiyo imwe yedzakanyanya nzira mune probabilistic simba kuyerera algorithms, asi kuenderana kwayo nenguva kwakadzikira kana ichienzaniswa nekunyanya kunyatso. Kana iri nguva yakaderera yesampling, iyi nzira inowanzo furatira muswe weiyo mukana wekugovera curve, asi kuti uvandudze huchokwadi, inoda kuwedzera nguva dzesampling. Latin hypercube sampling nzira inodzivirira dambudziko iri. Iyo inzira yesampling yehierarchical, iyo inogona kuve nechokwadi chekuti sampling mapoinzi anoratidza mukana wekugovera zvinobudirira uye kuderedza nguva dzesampling zvinobudirira.

Figure 1 shows the expectation and variance of Latin hypercube sampling method and Monte Carlo simulation method with sampling times ranging from 10 to 200. The overall trend of results obtained by the two methods is decreasing. However, the expectation and variance obtained by monte Carlo method are very unstable, and the results obtained by multiple simulations are not the same with the same sampling times. The variance of Latin hypercube sampling method decreases steadily with the increase of sampling times, and the relative error decreases to less than 5% when the sampling times are more than 150. It is worth noting that the sampling point of the Latin hypercube sampling method is symmetric about the Y-axis, so its expected error is 0, which is also its advantage.

Mufananidzo

FIG. 1 Comparison of different sampling times between MC and LHS

Latin hypercube sampling method is a layered sampling method. By improving the sample generation process of input random variables, the sampling value can effectively reflect the overall distribution of random variables. The sampling process is divided into two steps.

(1) Sampling

Xi (I = 1, 2,… ,m) i m) zvakasiyana-siyana, uye nguva dzesampling ndiN, sezvinoratidzwa muFIG. 2. The cumulative probability distribution curve yeXi yakakamurwa kuita N interval ine spacing yakaenzana uye hapana kupindirana, the midpoint of each interval inosarudzwa sesampling value yeprobability Y, uyezve sampling value Xi= p-1 (Yi) ndiyo yakaverengerwa nekushandisa inverse function, uye yakaverengerwa Xi ndiyo yesampling value ye random variable.

Mufananidzo

Mufananidzo 2 schematic diagram yeLHS

(2) Permutations

Sampling values ​​of random variables inowanikwa kubva (1) inorongwa sequentially, saka kuwirirana pakati pe m random variables ndeye 1, iyo isingagoni kuverengwa. Iyo gram-Schmidt sequence orthogonalization nzira inogona kugamuchirwa kuderedza kuwirirana pakati pemasampling maitiro ezvakangoitika zvakasiyana. Chekutanga, matrix yeK×M odha I=[I1, I2…, IK]T inogadzirwa. Zvinhu mumutsara wega wega zvakarongwa zvisina tsarukano kubva pa1 kuenda kuM, uye zvinomiririra chinzvimbo chesampling kukosha kweiyo yekutanga isina kurongeka yakasiyana.

Positive iteration

Mufananidzo

A reverse iterative

Mufananidzo

“Picture” represents assignment, takeout(Ik,Ij) represents calculation of residual value in linear regression Ik=a+bIj, rank(Ik) represents new vector formed by the sequence number of elements in orientation Ik from small to large.

Mushure mokunge bidirectional iteration kusvikira kukosha kweRMS ρ, iyo inomiririra kuwirirana, haina kuderera, nzvimbo matrix yeimwe neimwe yakasiyana-siyana mushure mokunge mvumo yawanikwa, uyezve matrix ekubvumira yezvakasiyana-siyana zvine kuwirirana kuduku kunogona kuwanikwa.

(5)

Ipo, mufananidzo wacho iwirirano coefficient pakati peIk neIj, cov is covariance, uye VAR musiyano.

2. Multi-objective optimization configuration of energy storage system

2.1 Objective function

Kuti uwedzere simba uye kukwanisa kwesimba rekuchengetedza simba, basa rekugadzirisa zvinhu zvakasiyana-siyana rinotangwa tichifunga nezvemutengo wesimba rekuchengetedza simba, simba rekuvhara-muganho uye kurasikirwa kwetiweki. Nekuda kwehukuru hwakasiyana hwechiratidzo chega chega, kutsauka kwemaitiro kunoitwa kune imwe neimwe chiratidzo. Mushure mekumisikidzwa kwekutsauswa, kukosha kwehuwandu hweakacherechedzwa hutsika hweakasiyana akasiyana huchave pakati (0,1), uye yakamisikidzwa dhata uwandu hwakachena husina mayuniti. Mumamiriro ezvinhu chaiwo, panogona kunge kune misiyano mukusimbisa pane chimwe nechimwe chiratidzo. Kana chiratidzo chimwe nechimwe chikapihwa huremu hwakati, kusimbisa kwakasiyana kunogona kuongororwa uye kudzidzwa.

(6)

Ndekupi, w indekisi inofanira kugadziriswa; Wmin uye wmax ndihwo hushoma uye huwandu hwebasa rekutanga pasina kumira.

Chinangwa basa iri

(7)

In the formula, λ1 ~ λ3 are weight coefficients, Eloss, PE and CESS are standardized branch network loss, branch active power crossing probability and energy storage investment cost respectively.

2.2 Genetic algorithm

Genetic algorithm imhando ye optimization algorithm yakagadzwa nekutevedzera iyo genetic uye evolutionary mitemo yekupona kweakasimba uye nekupona kweakasimba muzvisikwa. Iko kutanga kukodhi, huwandu hwekutanga hwekodhi yega yega pachinzvimbo chemunhu (mhinduro inogoneka yedambudziko), saka imwe neimwe inogoneka mhinduro inobva kune genotype phenotype shanduko, kuita sarudzo maererano nemitemo yezvakasikwa kune mumwe nemumwe, uye yakasarudzwa mukati chizvarwa chega chega kune chinotevera chizvarwa chekombuta nharaunda kuti ienderane kune akasimba munhu, kusvika yakanyanya kuchinjika kune nharaunda yemunhu, Mushure mekuita decoding, ndiyo inofungidzira yakakwana mhinduro yedambudziko.

Mune pepa iri, hurongwa hwemagetsi hunosanganisira photovoltaic uye kuchengetedza kwesimba kunotanga kuverengwa neprobabilistic power flow algorithm, uye data yakawanikwa inoshandiswa seyo mutsara wekuisa genetic algorithm kugadzirisa dambudziko. Maitiro ekuverenga anoratidzwa muFigure 3, iyo inonyanya kukamurwa kuita zvinotevera matanho:

Mufananidzo

FIG. 3 algorithm kuyerera

(1) Input system, photovoltaic uye simba rekuchengetedza data, uye ita Latin hypercube sampling uye Gram-Schmidt sequence orthogonalization;

(2) Input the sampled data into the power flow calculation model and record the calculation results;

(3) The output results were encoded by chromosome to generate the initial population corresponding to the sampling value;

(4) Verenga kusimba kwemunhu wega wega muhuwandu;

(5) sarudza, yambuka uye shandura kuburitsa chizvarwa chitsva chehuwandu;

(6) Tonga kana zvinodiwa zvazadzikiswa, kana zvisiri, kudzoka nhanho (4); Kana hongu, iyo yakakwana mhinduro inobuda mushure mekudhikodha.

3. Muenzaniso kuongorora

Iyo probabilistic simba rekuyerera nzira inoteedzerwa uye kuongororwa muIEEE24-node test system inoratidzwa muFIG. 4, iyo iyo voltage level ye1-10 nodes ndeye 138 kV, uye iyo ye11-24 nodes ndeye 230 kV.

Mufananidzo

Mufananidzo 4 IEEE24 node test system

3.1 Influence of photovoltaic power station on power system

Photovoltaic power station in power system, the location and capacity of power system will be affect the node voltage and branch power, therefore, before the analysis of the influence of the energy storage system for power grid, this section first analyzes the influence of photovoltaic power station on the system, photovoltaic access the system in this paper, the trend of the limit of the probability, the network loss and so on has carried on the simulation analysis.

Sezvinoonekwa kubva kuFIG. 5. Mhedzisiro yeyakagadzika magetsi gidhi remagetsi chiyero, 11, 12 uye 13 pachinzvimbo chekubatana zvakananga, semhedzisiro, akati wandei akabatana kune muganho mukana wediki uye rakawanda simba, photovoltaic chiteshi chemagetsi chinowana iyo node ine chiyero mhedzisiro ishoma pane kukanganisa kwesimba system.

Mufananidzo

Mufananidzo.

In addition to the exceedance of power flow, this paper also analyzes the influence of photovoltaic on node voltage, as shown in FIG. 5(b). The standard deviations of voltage amplitudes of nodes 1, 3, 8, 13, 14, 15 and 19 are selected for comparison. On the whole, the connection of photovoltaic power stations to the power grid does not have a great influence on the voltage of nodes, but the photovoltaic power stations have a great influence on the voltage of a-Nodes and their nearby nodes. In addition, in the system adopted by the calculation example, through comparison, it is found that photovoltaic power station is more suitable for access to the node types: ① nodes with higher voltage grade, such as 14, 15, 16, etc., the voltage almost does not change; (2) nodes supported by generators or adjusting cameras, such as 1, 2, 7, etc.; (3) in the line resistance is large at the end of the node.

Kuti uongorore pesvedzero yePV yekuwana nzvimbo pane yakazara network kurasikirwa kwesimba system, pepa iri rinoita kuenzanisa sezvakaratidzwa muFigure 5 (c). Zvinogona kuonekwa kuti kana dzimwe node dzine simba guru rekutakura uye pasina magetsi akabatanidzwa kune pv power station, kurasikirwa kwetiweki kwegadziriro kunoderedzwa. Kusiyana neizvi, nodes 21, 22 uye 23 ndiwo magumo emagetsi, ayo ane basa rekufambisira kwepakati simba. Iyo photovoltaic power station yakabatana kune idzi node ichakonzera kurasikirwa kukuru kwetiweki. Naizvozvo, iyo pv yemagetsi chiteshi chekusvika inofanira kusarudzwa painogashira simba kana node ine muhombe mutoro. Iyi nzira yekuwana inogona kuita kuti simba rekuyerera kwemagetsi riwedzere kuenzana uye kuderedza kurasikirwa kwetiweki yehurongwa.

Based on the three factors in the analysis of the above results, node 14 is taken as the access point of photovoltaic power station in this paper, and then the influence of the capacity of different photovoltaic power stations on the power system is studied.

Figure 6(a) analyzes the influence of photovoltaic capacity on the system. It can be seen that the standard deviation of the active power of each branch increases with the increase of photovoltaic capacity, and there is a positive linear relationship between the two. Except for several branches shown in the figure, the standard deviations of other branches are all less than 5 and show a linear relationship, which are ignored for the convenience of drawing. It can be seen that photovoltaic grid connection has a great influence on the power of directly connected with photovoltaic access point or adjacent branches. Because of limited power transmission line transmission, the transmission lines of quantities of construction and investment is huge, so installing a photovoltaic power station, should consider the limitation of transportation capacity, choose the smallest influence on line access to the best location, in addition, selecting the best capacity of photovoltaic power station will play an important part to reduce this effect.

Mufananidzo

Mufananidzo 6. (a) Bazi rinoshanda simba chiyero chekutsauka (b) simba rebazi rinoyerera kunze-kwe-muganhu mukana (c) zvachose system network kurasikirwa pasi pezvakasiyana photovoltaic

FIG. 6(b) inofananidza mukana wesimba rinoshanda rinopfuura muganhu webazi rega rega pasi peakasiyana pv chiteshi chemagetsi. Kunze kwematavi akaratidzwa mumufananidzo, mamwe matavi haana kudarika muganhu kana mukana waiva muduku zvikuru. Kuenzaniswa neFIG. 6(a), zvinogona kuonekwa kuti mukana we-off-limit uye standard deviation haina hukama. Simba rinoshanda remutsara rine yakakura mwero kutsauka kuchinjika hazvireve kugumira, uye chikonzero chine chekuita nekutapurirana kutungamira kwe photovoltaic kubuda simba. Kana iri munzira imwechete seyekutanga simba rebazi rinoyerera, diki photovoltaic simba rinogonawo kukonzera kuremara. Kana iyo pv simba rakakura kwazvo, kuyerera kwesimba kunogona kusapfuura muganhu.

MuFIG. 6 (c), iyo yakazara network kurasikirwa kwegadziriro inowedzera nekuwedzera kwe photovoltaic simba, asi izvi hazvisi pachena. Kana iyo photovoltaic simba ichiwedzera ne 60 MW, iyo yakazara network kurasikirwa inongowedzera ne 0.5%, kureva 0.75 MW. Naizvozvo, kana uchiisa pv zviteshi zvemagetsi, kurasikirwa netiweki kunofanirwa kutorwa sechinhu chechipiri, uye zvinhu zvine chekuita nekushanda kwakagadzikana kweiyo system zvinofanirwa kutariswa kutanga, senge transmission line simba rekuchinja uye kubuda-kwe-limita mukana. .

3.2 Impact of energy storage access on the system

Section 3.1 The access position and capacity of photovoltaic power station depend on the power system