site logo

Ulungelelwaniso olufanelekileyo lwenkqubo yokugcina amandla kwisikhululo samandla e-photovoltaic esekelwe ekuphumeni kwamandla okunokwenzeka

Abstract Umlinganiselo ophezulu wokuvelisa amandla e-photovoltaic uya kuba nemiphumo emibi ekuzinzeni kwenkqubo yamandla, kwaye ukugcinwa kwamandla kuthathwa njengenye yeendlela ezisebenzayo zokuphelisa le miphumo. Eli phepha lihlalutya impembelelo yokuvelisa amandla e-photovoltaic kwinkqubo yamandla ukusuka kumbono wokuhamba kwamandla, kwaye emva koko uhlalutya umphumo wokugcinwa kwamandla ekuthinteleni impembelelo. Okokuqala, imodeli yokusabalalisa okunokwenzeka kunye nemodeli yokugcina amandla yamacandelo kwinkqubo yamandla yaziswa, kwaye i-Latin hypercube sampling method kunye ne-gram-Schmidt sequence sequence method yaziswa. Okwesibini, imodeli yokuphucula iinjongo ezininzi yasekwa, eqwalasela iindleko zenkqubo yokugcina amandla, ukungabikho komda wokuhamba kwamandla esebe kunye nokulahleka kwenethiwekhi yegridi yamandla. Isisombululo esisiso somsebenzi wenjongo sifunyenwe nge-algorithm yemfuzo. Ekugqibeleni, ukulinganisa kuqhutyelwa kwi-IEEE24 inkqubo yokuvavanya i-node ukuhlalutya impembelelo yokufikelela kwi-photovoltaic eyahlukeneyo kunye nokufikelela kwindawo kwinkqubo yamandla kunye nomphumo wokugcinwa kwamandla kwinkqubo yamandla, kunye nokugcinwa kogcino olufanelekileyo oluhambelana namandla ahlukeneyo e-photovoltaic. ifunyenwe.

Amagama angundoqo okuvelisa amandla e-photovoltaic; Inkqubo yokugcina amandla; Ubumbeko olulungiselelweyo; Ukuhamba kwamandla okunokwenzeka; I-algorithm yemfuzo (ga)

Photovoltaic power generation has the advantages of green environmental protection and renewable, and is considered to be one of the most potential renewable energy. By 2020, China’s cumulative installed capacity of photovoltaic power generation has reached 253 million kw. The intermittency and uncertainty of large-scale PV power affect the power system, including issues of peak shaving, stability and light discarding, and the grid needs to adopt more flexible measures to cope with these issues. Energy storage is considered to be an effective way to solve these problems. The application of energy storage system brings a new solution for large-scale photovoltaic grid connection.

Okwangoku, kukho uphando oluninzi malunga nokuveliswa kwamandla e-photovoltaic, inkqubo yokugcina amandla kunye nokuhamba kwamandla okunokwenzeka ekhaya nakwamanye amazwe. Inani elikhulu lezifundo zoncwadi libonisa ukuba ukugcinwa kwamandla kunokuphucula izinga lokusetyenziswa kwe-photovoltaic kunye nokusombulula ukuzinza kwe-photovoltaic grid uxhumano. Ekuqulunqweni kwenkqubo yokugcina amandla kwisikhululo samandla esitsha, ingqalelo kufuneka ihlawulwe kungekhona kuphela kwisicwangciso sokulawula ukugcinwa kwe-optical kunye nokugcinwa komoya, kodwa kunye noqoqosho lwenkqubo yokugcina amandla. Ukongeza, ukuze kuphuculwe izikhululo zamandla ezininzi zokugcina amandla kwinkqubo yamandla, kuyafuneka ukuba kufundwe imodeli yezoqoqosho yokusebenza kwezikhululo zamandla okugcina amandla, indawo yokukhethwa kwendawo yokuqala kunye nesiphelo samatshaneli okuhambisa iphotovoltaic kunye indawo yokukhethwa kwendawo yokugcina amandla. Nangona kunjalo, uphando olukhoyo malunga nokucwangciswa ngokufanelekileyo kwenkqubo yokugcina amandla ayicingi impembelelo ethile kwinkqubo yamandla, kwaye uphando kwi-multi-point system ayibandakanyi iimpawu zokusebenza zokugcina ukukhanya okukhulu.

Ngophuhliso olukhulu lokungaqiniseki kokuveliswa kwamandla amatsha njengamandla omoya kunye ne-photovoltaic, kuyimfuneko ukubala ukuhamba kwamandla kwenkqubo yamandla kwisicwangciso sokusebenza kwenkqubo yamandla. Umzekelo, uncwadi lufunda eyona ndawo kunye nolwabiwo lwamandla ogcino lwamandla kwisixokelelwano samandla ngamandla omoya. Ukongeza, unxulumano phakathi kwemithombo emininzi yamandla emitsha kufuneka kwakhona kuqwalaselwe ekubaleni ukuhamba kwamandla. Nangona kunjalo, zonke ezi zifundo zingentla zisekwe kwiindlela zokuqukuqela zamandla, ezingathatheli ngqalelo ukungaqiniseki kokuveliswa kwamandla amatsha. Uncwadi luthathela ingqalelo ukungaqiniseki kwamandla omoya kwaye lusebenzisa indlela yokuqukuqela yamandla enokwenzeka ukuba yandise ukukhethwa kwesiza senkqubo yokugcina amandla, ephucula uqoqosho lokusebenza.

Okwangoku, iindlela ezahlukeneyo zokuhamba kwamandla okunokwenzeka ziye zacetywa ngabaphengululi, kwaye iindlela zokumbiwa kwedatha zenonlinear probabilistic power flow esekwe kwindlela yokulinganisa yaseMonte Carlo ziye zacetywa kuncwadi, kodwa ukugcinwa kwexesha kwendlela yaseMonte Carlo kumbi kakhulu. Kucetywayo kuncwadi ukuba kusetyenziswe ukuhamba kwamandla okunokwenzeka ukuba kufundwe indawo yokugcina amandla, kunye ne-2 m point point isetyenzisiwe, kodwa ukubala ukuchaneka kwale ndlela akufanelekile. Ukusetyenziswa kwe-Latin hypercube sampling method ekubaleni ukuhamba kwamandla kufundwe kweli phepha, kwaye ukongama kwe-Latin hypercube sampling method kuboniswa yimizekelo yamanani.

Ngokusekwe kolu phando lungentla, eli phepha lisebenzisa indlela yokuhamba kwamandla enokwenzeka ukuba ifunde ulwabiwo olufanelekileyo logcino lwamandla kwisistim samandla esinemveliso enkulu yephotovoltaic. Okokuqala, imodeli yokusabalalisa okunokwenzeka kunye nendlela yesampulu yesiLatini ye-hypercube yamacandelo kwinkqubo yamandla iyaziswa. Okwesibini, imodeli yokuphucula iinjongo ezininzi isekwe kuthathelwa ingqalelo iindleko zokugcina amandla, ukuhamba kwamandla phezu kwamathuba okuphela komda kunye nokulahleka kwenethiwekhi. Ekugqibeleni, uhlalutyo lokulinganisa lwenziwa kwi-IEEE24 inkqubo yovavanyo lwe-node.

1. Imodeli yokuhamba kwamandla enokwenzeka

1.1 Uncertainty model of components

I-Photovoltaic, umthwalo kunye nejenereyitha zonke ziguquguqukayo ezingahleliwe kunye nokungaqiniseki. Ekubaleni ukuhamba kwamandla okunokwenzeka kuthungelwano losasazo, imodeli enokwenzeka ichazwe kuncwadi. Ngokuhlalutya idatha yembali, amandla okuvelisa amandla e-photovoltaic alandela ukuhanjiswa kwe-BETA. Ngokufaka unikezelo olunokwenzeka lwamandla omthwalo, kucingelwa ukuba umthwalo ulandela unikezelo oluqhelekileyo, kwaye umsebenzi wawo wonikezelo loxinaniso lunokwenzeka.

Umfanekiso (1)

Where, Pl is the load power; μ L and σ L are the expectation and variance of load respectively.

Imodeli enokwenzeka yejenereyitha idla ngokuthatha unikezelo lwamanqaku amabini, kwaye umsebenzi wawo wonikezelo loxinzelelo lokwenzeka

(2)

Apho, u-P ulithuba lokusebenza okuqhelekileyo kwejenereyitha; I-PG ngamandla emveliso yejenereyitha.

Xa ukukhanya kwanele emini, amandla asebenzayo esikhululo samandla e-photovoltaic sikhulu, kwaye amandla okunzima ukuyisebenzisa ngexesha aya kugcinwa kwibhetri yokugcina amandla. Xa amandla omthwalo ephezulu, ibhetri yokugcina amandla iya kukhulula amandla agciniweyo. I-equation ye-energy balance equation yenkqubo yokugcina amandla yi

Xa utshaja

(3)

Xa ukukhutshwa

(4)

Umqobo

Imifanekiso,

Imifanekiso,

Umfanekiso, umfanekiso

Apho, iSt amandla agcinwe ngexesha T; I-Pt yintlawulo kunye namandla okukhupha ogcino lwamandla; I-SL kunye ne-SG ngamandla okutshaja kunye nokukhupha ngokulandelelanayo. η C kunye no-D bayatshaja kwaye bakhuphe ngokufanelekileyo ngokulandelelanayo. I-Ds yizinga lokuzikhupha lokugcinwa kwamandla.

1.2 Indlela yokuthatha isampuli yesiLatin hypercube

Kukho indlela yokulinganisa, indlela eqikelelweyo kunye nendlela yokuhlalutya engasetyenziselwa ukuhlalutya ukuhamba kwamandla enkqubo phantsi kweemeko ezingaqinisekanga. Ukulinganisa kweMonte Carlo yenye yezona ndlela zichanekileyo kwi-algorithms yokuhamba kwamandla okunokwenzeka, kodwa ixesha layo liphantsi xa lithelekiswa nokuchaneka okuphezulu. Kwimeko yamaxesha aphantsi okulinganisa isampuli, le ndlela idla ngokungawunaki umsila we-curve yokusabalalisa okunokwenzeka, kodwa ukuze kuphuculwe ukuchaneka, kufuneka kwandiswe amaxesha esampuli. Indlela yesampulu yesiLatin hypercube iyayinqanda le ngxaki. Yindlela yesampulu yoluhlu, enokuqinisekisa ukuba amanqaku eesampuli abonisa ukusasazwa okunokwenzeka ngokufanelekileyo kwaye anciphise amaxesha okusampula ngokufanelekileyo.

Figure 1 shows the expectation and variance of Latin hypercube sampling method and Monte Carlo simulation method with sampling times ranging from 10 to 200. The overall trend of results obtained by the two methods is decreasing. However, the expectation and variance obtained by monte Carlo method are very unstable, and the results obtained by multiple simulations are not the same with the same sampling times. The variance of Latin hypercube sampling method decreases steadily with the increase of sampling times, and the relative error decreases to less than 5% when the sampling times are more than 150. It is worth noting that the sampling point of the Latin hypercube sampling method is symmetric about the Y-axis, so its expected error is 0, which is also its advantage.

Umfanekiso

FIG. 1 Comparison of different sampling times between MC and LHS

Indlela yesampulu yesiLatin hypercube yindlela yokwenza isampuli. Ngokuphucula inkqubo yokuvelisa isampula yokufakwa kwezinto eziguquguqukayo ezingahleliwe, ixabiso lesampulu lingabonakalisa ngokufanelekileyo ukusabalalisa ngokubanzi kwezinto eziguquguqukayo. Inkqubo yesampulu yahlulwe yangamanyathelo amabini.

(1) Iisampulu

I-Xi (I = 1, 2,… ,m) ngu-m random variables, kwaye amaxesha esampuli ngu-N, njengoko kubonisiwe kwi-FIG. 2. Igophe elinokwenzeka lonikezelo lwe-X yahlulwe ngokwethuba le-N kunye nezithuba ezilinganayo kwaye akukho kudlulana, i-midpoint yekhefu ngalinye ikhethwa njengexabiso lesampulu yokunokwenzeka Y, kwaye ke ixabiso lesampulu Xi= p-1 (Yi) ibalwe ngokusebenzisa umsebenzi oguqukileyo, kwaye i-Xi ebalwayo lixabiso lesampulu yoguqulo olungenamkhethe.

Umfanekiso

Figure 2 schematic diagram of LHS

(2) Iimvume

Amaxabiso eesampuli zeenguqu ezingahleliwe ezifunyenwe kwi-(1) zicwangciswe ngokulandelelana, ngoko ke ulungelelwaniso phakathi kwe-m random variables yi-1, engenakubalwa. Indlela ye-gram-Schmidt yokulandelelana kwe-orthogonalization ingamkelwa ukunciphisa ulungelelwaniso phakathi kwamaxabiso eesampuli zezinto eziguquguqukayo ezingahleliwe. Okokuqala, i-matrix ye-K×M ye-oda I=[I1, I2…, IK]T yenziwe. Izinto ezikumqolo ngamnye zicwangciswe ngokungenamkhethe ukusuka ku-1 ukuya kwi-M, kwaye zimele indawo yexabiso lesampulu ye-original random variable.

Positive iteration

Umfanekiso

A reverse iterative

Umfanekiso

“Picture” represents assignment, takeout(Ik,Ij) represents calculation of residual value in linear regression Ik=a+bIj, rank(Ik) represents new vector formed by the sequence number of elements in orientation Ik from small to large.

Emva kophindaphindo lwe-bidirectional de ixabiso le-RMS ρ, elimele ulungelelwaniso, alinciphi, indawo ye-matrix yotshintsho olungenamkhethe emva kokuba imvume ifunyenwe, kwaye emva koko i-matrix yokuvumela i-random variables kunye nokuhambelana okuncinci kunokufunyanwa.

(5)

Apho, umfanekiso yi-coefficient yonxulumano phakathi kwe-Ik kunye ne-Ij, i-cov yi-covariance, kwaye i-VAR iyantlukwano.

2. Multi-objective optimization configuration of energy storage system

2.1 Umsebenzi wenjongo

Ukuze kulungiswe amandla kunye nomthamo wenkqubo yokugcina amandla, umsebenzi wokuphucula iinjongo ezininzi usungulwe ngokuqwalasela indleko yenkqubo yokugcina amandla, amandla okuphela komda kunye nokulahleka kwenethiwekhi. Ngenxa yemilinganiselo eyahlukeneyo yesalathisi ngasinye, ukulinganisa ukulinganisa kwenziwa kwisalathisi ngasinye. Emva kokulungelelaniswa komgangatho, uluhlu lwexabiso lwamaxabiso abonwayo eenguqu ezahlukeneyo luya kuba phakathi (0,1), kunye nedatha esemgangathweni yizixa ezimsulwa ngaphandle kweeyunithi. Kwimeko yokwenene, kunokubakho ukungafani ekugxininiseni kwisalathisi ngasinye. Ukuba isalathisi ngasinye sinikwe ubunzima obuthile, ugxininiso oluhlukeneyo lunokuhlalutywa kwaye lufundwe.

(6)

Apho, w isalathisi siza kulungiswa; I-Wmin kunye ne-wmax zezona zincinci kunye nobuninzi bomsebenzi wokuqala ngaphandle komgangatho.

Umsebenzi wenjongo ngu

(7)

In the formula, λ1 ~ λ3 are weight coefficients, Eloss, PE and CESS are standardized branch network loss, branch active power crossing probability and energy storage investment cost respectively.

2.2 Genetic algorithm

I-algorithm ye-Genetic luhlobo lwe-algorithm yokuphucula esekwe ngokuxelisa imithetho yemfuzo kunye ne-evolutionary yokuphila kweyona nto inamandla kunye nokuphila kweyona nto inamandla kwindalo. Kuqala ukukhowuda, inani labemi lokuqala nganye ikhowudi egameni lomntu (isisombululo esinokwenzeka sengxaki), ngoko ke isisombululo ngasinye esinokwenzeka sisuka kwinguqu ye-genotype phenotype, ukukhetha ngokwemithetho yendalo yomntu ngamnye, kwaye ikhethwe isizukulwana ngasinye ukuya kwisizukulwana esilandelayo se-computing bume ukuze siqhelane nomntu owomeleleyo, de kube sesona silungelelaniso sokusingqongileyo somntu ngamnye, Emva kokwenza iikhowudi, sisisombululo esisiso sengxaki.

Kweli phepha, inkqubo yamandla equka i-photovoltaic kunye nokugcinwa kwamandla kuqala kubalwa yi-algorithm ye-probabilistic yokuhamba kwamandla, kwaye idatha efunyenweyo isetyenziswe njengenguqu yegalelo le-algorithm yezofuzo ukusombulula ingxaki. Inkqubo yokubala iboniswe kuMfanekiso 3, owahlulwe ikakhulu ngamanyathelo alandelayo:

Umfanekiso

IKHIWANE. 3 Ukuhamba kwe-algorithm

(1) Input system, photovoltaic and energy storage data, and perform Latin hypercube sampling and Gram-Schmidt sequence orthogonalization;

(2) Faka idatha yesampula kwimodeli yokubala ukuhamba kwamandla kwaye urekhode iziphumo zokubala;

(3) The output results were encoded by chromosome to generate the initial population corresponding to the sampling value;

(4) Bala ukufaneleka komntu ngamnye kubemi;

(5) khetha, unqamleze kwaye uguqule ukuvelisa isizukulwana esitsha sabemi;

(6) Igwebe ukuba iimfuno zifezekisiwe, ukuba akunjalo, inyathelo lokubuyisela (4); Ukuba ewe, esona sisombululo sisiso siphuma emva kokwenziwa kwekhowudi.

3. Uhlalutyo lomzekelo

The probabilistic power flow method is simulated and analyzed in the IEEE24-node test system shown in FIG. 4, in which the voltage level of 1-10 nodes is 138 kV, and that of 11-24 nodes is 230 kV.

Umfanekiso

Umzobo 4 IEEE24 inkqubo yovavanyo lwe-node

3.1 Influence of photovoltaic power station on power system

Isikhululo samandla e-Photovoltaic kwinkqubo yamandla, indawo kunye nomthamo wenkqubo yamandla iya kuchaphazela amandla ombane we-node kunye namandla esebe, ngoko ke, ngaphambi kokuba uhlalutyo lwempembelelo yenkqubo yokugcina amandla kwigridi yamandla, eli candelo kuqala lihlalutya impembelelo yamandla e-photovoltaic. isikhululo kwisistim, ukufikelela kwe-photovoltaic kwinkqubo kweli phepha, ukuthambekela komda wokunokwenzeka, ukulahleka kwenethiwekhi kunye nokunye okuqhubekileyo kuhlalutyo lokulinganisa.

As can be seen from FIG. 5(a), after photovoltaic power station is connected, nodes with smaller branch power flow overlimit are as follows: 11, 12, 13, 23, 13 to balance the node node, the node voltage and the phase Angle is given, have the effect of stable power grid power balance, 11, 12 and 23 instead of directly connected, as a result, several nodes connected to the limit the probability of smaller and more power, photovoltaic power station will access the node with balance effect is less on the impact of power system.

Umfanekiso

Umfanekiso 5. (a) isixa-mali sokuhamba kombane ngaphandle komda onokwenzeka (b) ukuguquguquka kwamandla ombane kwindawo (c) ilahleko yenkqubo epheleleyo yothungelwano kwiindawo ezahlukeneyo zofikelelo lwePV.

Ukongeza kokugqithiswa kwamandla, eli phepha liphinda lihlalutye impembelelo ye-photovoltaic kwi-voltage ye-node, njengoko kuboniswe kwi-FIG. 5(b). Ukuphambuka okusemgangathweni kwe-voltage amplitudes ye-nodes 1, 3, 8, 13, 14, 15 kunye ne-19 zikhethwa ukuthelekisa. Ngokubanzi, ukudityaniswa kwezikhululo zamandla e-photovoltaic kwigridi yamandla ayinayo impembelelo enkulu kwi-voltage ye-nodes, kodwa izikhululo zamandla e-photovoltaic zinempembelelo enkulu kwi-voltage ye-a-Nodes kunye neendawo ezikufutshane. Ukongeza, kwinkqubo eyamkelwe ngumzekelo wokubala, ngokuthelekisa, kufunyenwe ukuba isikhululo samandla e-photovoltaic sifanelekile ngakumbi ukufikelela kwiintlobo ze-node: ① iindawo ezinomgangatho ophezulu wombane, njenge-14, 15, 16, njl. i-voltage phantse ayitshintshi; (2) ii-nodes ezixhaswa yi-generator okanye iikhamera ezihlengahlengisayo, ezifana ne-1, i-2, i-7, njl.; (3) kumgca ukuchasana mkhulu ekupheleni node.

Ukuze uhlalutye impembelelo ye-PV yokufikelela kwindawo yokulahlekelwa kwenethiwekhi iyonke yenkqubo yamandla, eli phepha lenza uthelekiso njengoko kuboniswe kwi-Figure 5 (c). Ingabonwa ukuba ezinye iinodi ezinamandla omthwalo omkhulu kwaye akukho mbane uqhagamshelwe kwisikhululo samandla se-pv, ilahleko yenethiwekhi yenkqubo iya kuncitshiswa. Ngokuchasene noko, ii-nodes 21, 22 kunye ne-23 zisiphelo sobonelelo lwamandla, olujongene nokuhanjiswa kwamandla okuphakathi. Isikhululo samandla e-photovoltaic esixhunywe kula ma nodes siya kubangela ilahleko enkulu yenethiwekhi. Ngoko ke, indawo yokufikelela kwisikhululo samandla e-pv kufuneka ikhethwe ekupheleni kokufumana amandla okanye i-node enomthwalo omkhulu. Le ndlela yokufikelela inokwenza ukuhanjiswa kwamandla kwenkqubo kulinganiswe kwaye kunciphise ukulahleka kwenethiwekhi yenkqubo.

Ngokusekelwe kwizinto ezintathu kuhlalutyo lweziphumo ezingentla, i-node ye-14 ithathwa njengendawo yokufikelela kwisikhululo samandla e-photovoltaic kweli phepha, kwaye ke impembelelo yomthamo wezikhululo zamandla e-photovoltaic ezahlukeneyo kwinkqubo yamandla ifundwa.

Umzobo 6 (a) uhlalutya impembelelo yomthamo we-photovoltaic kwinkqubo. Ingabonwa ukuba ukuphambuka okusemgangathweni kwamandla asebenzayo kwisebe ngalinye kwanda ngokunyuka kwamandla e-photovoltaic, kwaye kukho ubudlelwane obuhle bomgca phakathi kwezi zibini. Ngaphandle kwamasebe amaninzi aboniswe kumzobo, ukuphambuka okusemgangathweni kwamanye amasebe onke angaphantsi kwe-5 kwaye abonisa ubudlelwane bomgca, obungahoywayo ukwenzela ukuba kube lula ukuzoba. Ingabonwa ukuba uxhumano lwegridi ye-photovoltaic inempembelelo enkulu kumandla okudibanisa ngokuthe ngqo kunye ne-photovoltaic access point okanye amasebe akufutshane. Ngenxa yokuhanjiswa komgca wothumelo lwamandla amancinci, iintambo zothumelo lwemiyinge yolwakhiwo kunye notyalo-mali lukhulu, ngoko ke ukufakela isikhululo samandla se-photovoltaic, kufuneka siqwalasele umda womthamo wothutho, ukhethe eyona mpembelelo incinci kumgca wokufikelela kwindawo engcono, ukongeza, ukukhetha umthamo ongcono wesikhululo samandla e-photovoltaic kuya kudlala indima ebalulekileyo ekunciphiseni esi siphumo.

Umfanekiso

Figure 6. (a) Branch active power standard deviation (b) branch power flow out-of-limit probability (c) total system network loss under different photovoltaic capacities

FIG. 6(b) compares the probability of active power exceeding the limit of each branch under different pv power station capacities. Except for the branches shown in the figure, the other branches did not exceed the limit or the probability was very small. Compared with FIG. 6(a), it can be seen that the probability of off-limit and standard deviation are not necessarily related. The active power of a line with large standard deviation fluctuation does not necessarily off-limit, and the reason is related to the transmission direction of photovoltaic output power. If it is in the same direction as the original branch power flow, small photovoltaic power may also cause off-limit. When the pv power is very large, the power flow may not exceed the limit.

In FIG. 6(c), the total network loss of the system increases with the increase of photovoltaic capacity, but this effect is not obvious. When the photovoltaic capacity increases by 60 MW, the total network loss only increases by 0.5%, i.e. 0.75 MW. Therefore, when installing pv power stations, network loss should be taken as a secondary factor, and factors that have a greater impact on the stable operation of the system should be considered first, such as transmission line power fluctuation and out-of-limit probability.

3.2 Impembelelo yokufikelela kugcino lwamandla kwisistim

Section 3.1 The access position and capacity of photovoltaic power station depend on the power system