site logo

Qaabaynta ugu wanagsan ee nidaamka kaydinta tamarta ee xarunta korantada sawir-qaadista ee ku salaysan socodka awooda suurtogalka ah

Abstract Qayb sare oo ka mid ah soo saarista tamarta sawir-qaadista waxay saameyn xun ku yeelan doontaa xasilloonida nidaamka tamarta, kaydinta tamarta waxaa loo tixgeliyaa inay tahay mid ka mid ah hababka wax ku oolka ah ee lagu baabi’inayo saameyntan. Warqadani waxay falanqeyneysaa saameynta korantada sawir-qaadista ee nidaamka awoodda iyadoo la eegayo aragtida socodka awoodda, ka dibna wuxuu falanqeynayaa saameynta kaydinta tamarta ee xakameynta saameynta. Marka hore, qaabka qaybinta itimaalka iyo qaabka kaydinta tamarta ee qaybaha nidaamka korantada ayaa la soo bandhigay, waxaana la soo bandhigay habka muunada hypercube ee Latin iyo habka caadiga ah ee isku xigxiga gram-Schmidt. Marka labaad, qaabka wanaajinta ujeedooyinka badan ayaa la aasaasay, kaas oo tixgeliyey qiimaha nidaamka kaydinta tamarta, suurtogalnimada xad-dhaafka ah ee qulqulka tamarta laanta iyo luminta shabakadaha korontada. Xalka ugu fiican ee shaqada ujeedada waxaa lagu helay algorithm hidde. Ugu dambeyntiina, jilitaanka waxaa lagu fuliyaa nidaamka tijaabada node IEEE24 si loo falanqeeyo saameynta kala duwan ee awoodda helitaanka sawir-qaadista iyo goobta gelitaanka nidaamka tamarta iyo saameynta kaydinta tamarta ee nidaamka tamarta, iyo qaabeynta kaydinta tamarta ugu fiican ee u dhiganta awoodda sawir-qaadista ee kala duwan. waa la helaa.

Erayada muhiimka ah ee korantada sawirka; Nidaamka kaydinta tamarta; Qaabaynta la wanaajiyey; Qulqulka awoodda ixtimaalka; Algorithm hidde (ga)

Photovoltaic power generation has the advantages of green environmental protection and renewable, and is considered to be one of the most potential renewable energy. By 2020, China’s cumulative installed capacity of photovoltaic power generation has reached 253 million kw. The intermittency and uncertainty of large-scale PV power affect the power system, including issues of peak shaving, stability and light discarding, and the grid needs to adopt more flexible measures to cope with these issues. Energy storage is considered to be an effective way to solve these problems. The application of energy storage system brings a new solution for large-scale photovoltaic grid connection.

At present, there are many researches on photovoltaic power generation, energy storage system and probability power flow at home and abroad. A large number of literature studies show that energy storage can improve the utilization rate of photovoltaic and solve the stability of photovoltaic grid connection. In the configuration of energy storage system in new energy power station, attention should be paid not only to the control strategy of optical storage and wind storage, but also to the economy of energy storage system. In addition, for the optimization of multiple energy storage power stations in the power system, it is necessary to study the economic model of the operation of energy storage power stations, the site selection of the starting point and end point of photovoltaic transmission channels and the site selection of energy storage. However, the existing research on optimal configuration of energy storage system does not consider the specific impact on power system, and the research on multi-point system does not involve large-scale optical storage operation characteristics.

Iyadoo horumarinta baaxadda weyn ee tamarta tamarta cusub ee aan la hubin sida tamarta dabaysha iyo sawir-qaadista, waxaa lagama maarmaan ah in la xisaabiyo qulqulka tamarta ee nidaamka tamarta ee qorsheynta hawlgalka nidaamka tamarta. Tusaale ahaan, suugaantu waxay barataa meesha ugu fiican iyo qoondaynta awoodda kaydinta tamarta ee nidaamka tamarta ee leh tamarta dabaysha. Intaa waxaa dheer, isku xidhka ka dhexeeya ilo tamareed oo badan oo cusub waa in sidoo kale lagu tixgaliyaa xisaabinta socodka tamarta. Si kastaba ha noqotee, dhammaan daraasadaha kor ku xusan waxay ku saleysan yihiin hababka socodka awoodda go’aaminta, kuwaas oo aan tixgelineynin hubaal la’aanta tamarta cusub. Suugaantu waxay tixgelisaa hubanti la’aanta tamarta dabaysha waxayna khuseysaa habka qulqulka korantada ee suurtogalka ah si kor loogu qaado xulashada goobta nidaamka kaydinta tamarta, taas oo hagaajinaysa dhaqaalaha hawlgalka.

Waqtigan xaadirka ah, algorithms socodka awoodda kala duwan ee suurtogalka ah ayaa waxaa soo jeediyay aqoonyahanno, iyo hababka macdanta xogta ee socodka awoodda aan tooska ahayn ee ku salaysan habka jilitaanka Monte Carlo ayaa lagu soo jeediyay suugaanta, laakiin waqtiga habka Monte Carlo waa mid aad u liita. Waxaa lagu soo jeediyay suugaanta si loo isticmaalo socodka awoodda ugu wanaagsan ee suurtogalka ah si loo barto goobta kaydinta tamarta, iyo habka 2 m ee dhibcaha ayaa loo isticmaalaa, laakiin saxnaanta xisaabinta habkani maaha mid ku habboon. Codsiga habka muunada hypercube ee Laatiinka ee xisaabinta socodka korantada ayaa lagu bartay warqadan, iyo sareynta habka muunadaynta hypercube ee Laatiinka waxa lagu muujiyay tusaalayaal tirooyin ah.

Iyada oo ku saleysan cilmi-baarista kor ku xusan, warqadani waxay isticmaashaa habka qulqulka tamarta ee suurtogalka ah si ay u darso qoondaynta ugu wanaagsan ee kaydinta tamarta ee nidaamka tamarta oo leh koronto sawir leh oo ballaaran. Marka hore, qaabka qaybinta itimaalka iyo habka muunadeynta hypercube Latin ee qaybaha nidaamka awooda ayaa la soo bandhigay. Marka labaad, qaabka wanaajinta ujeedooyinka badan ayaa la dejiyay iyadoo la tixgalinayo qiimaha kaydinta tamarta, socodka tamarta ee xad dhaafka ixtimaalka iyo luminta shabakada. Ugu dambeyntii, falanqaynta jilitaanka waxaa lagu fuliyaa nidaamka tijaabada node IEEE24.

1. Habka socodka quwadda ee suurtogalka ah

1.1 Qaabka hubinta qaybaha

Photovoltaic, xamuulka iyo koronto-dhaliye dhamaantood waa doorsoomayaal aan kala sooc lahayn oo aan la hubin. Xisaabinta qulqulka awoodda suurtogalka ah ee shabakada qaybinta, qaabka suurtogalka ah ayaa lagu sharaxay suugaanta. Iyada oo loo marayo falanqaynta xogta taariikhiga ah, awoodda wax soo saarka ee koronto-dhaliyaha sawir-qaadista waxay raacdaa qaybinta BETA. Marka la rakibo qaybinta itimaalka ee awoodda rarka, waxaa loo maleynayaa in culeysku uu raacayo qaybinta caadiga ah, iyo shaqadiisa qaybinta cufnaanta itimaalka waa

Sawirka (1)

Where, Pl is the load power; μ L and σ L are the expectation and variance of load respectively.

Tusaalaha itimaalka ee koronto-dhaliye wuxuu inta badan qaataa qaybinta laba-dhibcood, iyo shaqadiisa qaybinta cufnaanta itimaalka waa

(2)

Halka, P ay tahay suurtogalnimada hawlgalka caadiga ah ee koronto-dhaliye; PG waa awooda wax soo saarka ee koronto dhaliyaha.

Marka nalku ku filan yahay duhurkii, awoodda firfircoon ee saldhigga korantada sawir-qaadista waa weyn tahay, awoodda ay adag tahay in la isticmaalo wakhtiga waxaa lagu kaydin doonaa batteriga kaydinta tamarta. Marka awoodda culaysku sarreeyo, batteriga kaydinta tamarta ayaa sii deyn doona tamarta kaydsan. Isla’egta dheelitirka tamarta degdega ah ee nidaamka kaydinta tamarta waa

Markaad lacag bixinayso

(3)

When the discharge

(4)

Culayska

Sawiro,

Sawiro,

Sawir, sawir

Halkee, St waa tamarta lagu kaydiyaa wakhtiga T; Pt waa dallacaadda iyo soo saarista awoodda kaydinta tamarta; SL iyo SG waa tamarta dallacaadda iyo dallacaadda siday u kala horreeyaan. η C iyo η D ayaa dallacaya oo bixinaya waxtarka siday u kala horreeyaan. Ds waa is-soo daynta heerka kaydinta tamarta.

1.2 Habka muunada hypercube ee Latin

Waxaa jira qaab jilid, hab qiyaas ah iyo hab gorfayn oo loo isticmaali karo in lagu falanqeeyo socodka awoodda nidaamka ee arrimo aan la hubin. Jilitaanka Monte Carlo waa mid ka mid ah hababka ugu saxsan ee algorithms-yada socodka awoodda, laakiin waqtigeeda ayaa hooseeya marka loo eego saxnaanta sare. Xaaladda wakhtiyada muunad hooseeya, habkani wuxuu inta badan iska indho-tiraa dabada qaybinta ixtimaalka, laakiin si loo hagaajiyo saxnaanta, waxay u baahan tahay in la kordhiyo wakhtiyada saamiga. Habka muunada hypercube ee Latin ayaa ka fogaanaya dhibaatadan. Waa hab muunad heersare ah, kaas oo hubin kara in dhibcaha muunadku ka tarjumayaan qaybinta ixtimaalka si wax ku ool ah oo hoos u dhigta waqtiyada muunad-qaadista si wax ku ool ah.

Figure 1 shows the expectation and variance of Latin hypercube sampling method and Monte Carlo simulation method with sampling times ranging from 10 to 200. The overall trend of results obtained by the two methods is decreasing. However, the expectation and variance obtained by monte Carlo method are very unstable, and the results obtained by multiple simulations are not the same with the same sampling times. The variance of Latin hypercube sampling method decreases steadily with the increase of sampling times, and the relative error decreases to less than 5% when the sampling times are more than 150. It is worth noting that the sampling point of the Latin hypercube sampling method is symmetric about the Y-axis, so its expected error is 0, which is also its advantage.

Sawirka

FIG 1 Isbarbardhigga waqtiyada muunadeynta ee kala duwan ee u dhexeeya MC iyo LHS

Habka muunada hypercube ee Latin waa hab muunad lakab ah. Marka la wanaajiyo habka jiilka muunada ee doorsoomayaal random gelinta, qiimihii muunadku wuxuu si wax ku ool ah u muujin karaa qaybinta guud ee doorsoomayaasha random. Habka muunadku waxa loo qaybiyaa laba tilaabo.

(1) Sampling

Xi (I = 1, 2,…,m) waa doorsoomayaal random ah, waqtiyada muunaduhuna waa N, sida ku cad FIG. 2. Qalooca qaybinta itimaalka isugaynta ee Xi waxa loo qaybiyaa N dhexda oo leh kala dheerayn siman oo aan lahayn is dulsaar, barta dhexe ee barti kasta waxa loo doortaa sida qiimaha muunad ee ixtimaalka Y, ka dibna qiimaha muunada Xi= p-1 (Yi) waa waxaa lagu xisaabiyaa iyadoo la isticmaalayo shaqa rogan, iyo Xi la xisaabiyay waa qiimaha muunad ee doorsoomaha random.

Sawirka

Figure 2 schematic diagram of LHS

(2) Kharashaadka

Qiimayaasha muunad ee doorsoomayaal random-ka laga helay (1) si isdaba joog ah ayaa loo habeeyey, markaa isku xidhka doorsoomayaasha random m waa 1, oo aan la xisaabin karin. Habka isku xigxiga ee garaam-Schmidt waa la qaadan karaa si loo dhimo xidhiidhka ka dhexeeya qiimayaasha muunad ee doorsoomayaal random. Marka hore, jaantuska KM ee I=[I1, I2…, IK]T ayaa la sameeyay. Qaybaha saf kasta si bakhtiyaa nasiib ah ayaa loo habeeyey min 1 ilaa M, waxayna u taagan yihiin booska qiimaynta ee doorsoomaha random asalka ah.

Ku celcelinta togan

Sawirka

Celcelis ahaan

Sawirka

“Sawirka” waxa uu matalaa hawl-gudbin, ka-qaadis (Ik, Ij) waxa uu ka dhigan yahay xisaabinta qiimaha hadhay ee dib-u-celinta tooska ah Ik=a+bIj, darajada(Ik) waxa ay matalaysaa vector cusub oo ay sameysteen tirada isku xigxiga ee curiyayaasha ee hanuuninta Ik yar ilaa weyn.

Ka dib laba jiho soo noqnoqda ilaa qiimaha RMS ρ, oo ka dhigan isku-xirnaanta, ma hoos u dhaco, matrixka booska doorsoomayaasha random kasta ka dib markii permutation la helo, ka dibna matrix permutation ee doorsoomayaasha random oo leh xiriirinta ugu yar waa la heli karaa.

(5)

Halka, sawirku yahay isku xidhka isku xidhka u dhexeeya Ik iyo Ij, cov waa wada shaqayn, iyo VAR waa kala duwanaanshuhu.

2. Multi-objective optimization configuration of energy storage system

2.1 Shaqada ujeeddada

Si loo wanaajiyo awoodda iyo awoodda nidaamka kaydinta tamarta, hawl-fududeynta ujeedo badan ayaa la aasaasay iyada oo la tixgelinayo kharashka nidaamka kaydinta tamarta, suurtogalnimada awoodda xaddidan iyo khasaaraha shabakada. Iyadoo loo eegayo cabbirrada kala duwan ee tilmaame kasta, jaangooyooyinka leexinta ayaa loo sameeyaa tilmaame kasta. Halbeeg-beegista ka dib, kala duwanaanta qiimaha qiimayaasha doorsoomayaal kala duwan waxay noqon doonaan inta u dhaxaysa (0,1), iyo xogta la habeeyey waa tiro saafi ah oo aan unug lahayn. Xaaladda dhabta ah, waxaa jiri kara kala duwanaansho xoogga la saarayo tilmaame kasta. Haddii tilmaame kasta la siiyo miisaan gaar ah, culaysyo kala duwan ayaa la lafaguri karaa oo la baran karaa.

(6)

Halka, w ay tahay tusaha la hagaajinayo; Wmin iyo wmax waa ugu yar iyo ugu badnaan shaqada asalka ah iyada oo aan la jaan qaadin.

The objective function is

(7)

Qaaciddada, λ1 ~ 3 waa isku-dheellitirnaanta miisaanka, Eloss, PE iyo CESS waa luminta shabakad laanta jaangooyo, laanta awood-is-goysyada firfircoonida iyo kharashka kaydinta tamarta siday u kala horreeyaan.

2.2 Hidde algorithm

Genetic algorithm is a kind of optimization algorithm established by imitating the genetic and evolutionary laws of survival of the fittest and survival of the fittest in nature. It first to coding, initial population each coding on behalf of an individual (a feasible solution of the problem), so each feasible solution is from for genotype phenotype transformation, to undertake choosing according to the laws of nature for each individual, and selected in each generation to the next generation of computing environment to adapt to the strong individual, until the most adaptable to the environment of the individual, After decoding, it is the approximate optimal solution of the problem.

In this paper, the power system including photovoltaic and energy storage is firstly calculated by the probabilistic power flow algorithm, and the obtained data is used as the input variable of the genetic algorithm to solve the problem. The calculation process is shown in Figure 3, which is mainly divided into the following steps:

Sawirka

FIG 3 socodka Algorithm

(1) Nidaamka gelinta, xogta kaydinta tamarta iyo tamarta, oo samee muunad-samaynta hypercube Latin ah iyo habaynta isku xigxiga ee Gram-Schmidt;

(2) Geli xogta la muunadeeyay qaabka xisaabinta socodka korantada oo qor natiijada xisaabinta;

(3) Natiijooyinka wax-soo-saarka waxaa lagu dhejiyay koromosoomyada si ay u abuuraan tirada dadka bilowga ah ee u dhiganta qiimaha saamiga;

(4) Xisaabi taam ahaanshaha shakhsi kasta oo dadweynaha ka mid ah;

(5) select, cross and mutate to produce a new generation of population;

(6) Garsoor in shuruudaha la buuxiyey, haddii kale, soo celinta tallaabada (4); Hadday haa tahay, xalka ugu fiican ayaa la soo saaray ka dib markii la go’aamiyo.

3. Tusaale falanqaynta

The probabilistic power flow method is simulated and analyzed in the IEEE24-node test system shown in FIG. 4, in which the voltage level of 1-10 nodes is 138 kV, and that of 11-24 nodes is 230 kV.

Sawirka

Jaantuska 4 IEEE24 habka tijaabada node

3.1 Influence of photovoltaic power station on power system

Photovoltaic power station in power system, the location and capacity of power system will be affect the node voltage and branch power, therefore, before the analysis of the influence of the energy storage system for power grid, this section first analyzes the influence of photovoltaic power station on the system, photovoltaic access the system in this paper, the trend of the limit of the probability, the network loss and so on has carried on the simulation analysis.

Sida ka muuqata FIG. 5(a), ka dib markii saldhiga korantada photovoltaic lagu xidho, noodhka leh laanta yar yar ee xad dhaafka korantada waa sida soo socota: 11, 12, 13, 23, 13 si loo dheellitiro noode node, danab noode iyo xagasha wajiga waxaa la siiyaa, leeyihiin Saamaynta dheelitirka korantada korantada ee xasilloon, 11, 12 iyo 23 halkii si toos ah loogu xidhi lahaa, Natiijo ahaan, noodhadhyo dhowr ah oo ku xidhan xadka suurtagalnimada awood yar iyo mid ka badan, saldhigga tamarta photovoltaic waxay heli doontaa noode leh saamaynta dheelitirka ayaa ka yar saamaynta nidaamka awoodda.

Sawirka

Jaantuska 5. (a) wadarta qulqulka korantada ee ka baxsan ixtimaalka xad-dhaafka ah (b) isbedbeddelka korantada qanjidhada (c) wadarta guud ee nidaamka nidaamka lumitaanka dhibcaha gelitaanka PV ee kala duwan

In addition to the exceedance of power flow, this paper also analyzes the influence of photovoltaic on node voltage, as shown in FIG. 5(b). The standard deviations of voltage amplitudes of nodes 1, 3, 8, 13, 14, 15 and 19 are selected for comparison. On the whole, the connection of photovoltaic power stations to the power grid does not have a great influence on the voltage of nodes, but the photovoltaic power stations have a great influence on the voltage of a-Nodes and their nearby nodes. In addition, in the system adopted by the calculation example, through comparison, it is found that photovoltaic power station is more suitable for access to the node types: ① nodes with higher voltage grade, such as 14, 15, 16, etc., the voltage almost does not change; (2) nodes supported by generators or adjusting cameras, such as 1, 2, 7, etc.; (3) in the line resistance is large at the end of the node.

Si loo falanqeeyo saamaynta barta gelitaanka PV ee wadarta khasaaraha shabakadda ee nidaamka awoodda, warqaddani waxay samaynaysaa isbarbardhigga sida ku cad sawirka 5 (c). Waxaa la arki karaa in haddii qaar ka mid ah noodhadhka leh awoodda culeyska weyn iyo koronto la’aan ay ku xiran yihiin saldhigga korantada ee pv, khasaaraha shabakadda ee nidaamka waa la dhimi doonaa. Taas bedelkeeda, noodhka 21, 22 iyo 23 waa dhamaadka tamarta, kaas oo ka masuul ah gudbinta tamarta dhexe. Saldhigga korantada ee sawirka Voltaic ee ku xiran noodhadhkan waxay sababi doontaa khasaare weyn oo shabakadeed. Sidaa darteed, barta gelitaanka saldhigga korantada ee pv waa in lagu doortaa dhamaadka helitaanka tamarta ama noodhka leh culeys weyn. Habkan helitaanku wuxuu ka dhigi karaa qaybinta qulqulka tamarta ee nidaamka mid dheellitiran oo yareynaya khasaaraha shabakada ee nidaamka.

Iyada oo ku saleysan saddexda arrimood ee falanqaynta natiijooyinka kor ku xusan, noodhka 14 ayaa loo qaataa sida barta gelitaanka ee saldhigga tamarta sawir-qaadista ee warqaddan, ka dibna saameynta awoodda xarumaha tamarta ee kala duwan ee nidaamka korontada ayaa la daraaseeyaa.

Jaantuska 6 (a) wuxuu falanqeynayaa saameynta awoodda sawir-qaadista ee nidaamka. Waxaa la arki karaa in isbeddelka caadiga ah ee awoodda firfircoon ee laan kasta ay kordho kororka awoodda sawir-qaadista, waxaana jira xiriir toosan oo toos ah oo u dhexeeya labada. Marka laga reebo dhowr laamood oo lagu muujiyay shaxanka, jaangooyooyinka caadiga ah ee laamaha kale dhamaantood way ka yar yihiin 5 waxayna muujinayaan xiriir toosan, kuwaas oo la iska indhatiray habboonaanta sawirka. Waxaa la arki karaa in isku xirka shabakada sawir-qaadista uu saameyn weyn ku leeyahay awoodda tooska ah ee ku xiran barta helitaanka sawir-qaadista ama laamaha ku xiga. Sababtoo ah xaddidaadda gudbinta xariiqda korantada ee xaddidan, xadhkaha gudbinta ee tirada dhismaha iyo maalgashiga waa mid aad u weyn, sidaas darteed rakibidda saldhigga korantada ee sawirka, waa in ay tixgeliyaan xaddidaadda awoodda gaadiidka, dooro saameynta ugu yar ee helitaanka khadka ee goobta ugu fiican, marka lagu daro, xulashada awoodda ugu fiican ee saldhigga korantada ee sawirka Voltaic waxay ka ciyaari doontaa qayb muhiim ah si loo yareeyo saameyntan.

Sawirka

Jaantus 6. (a) Laanta awoodda firfircoon ee weecasho ah (b) Korontada laanta qulqulka awoodda xad-dhaafka ah ee suurtogalka ah (c) wadarta guud ee nidaamka nidaamka luminta ee hoos yimaada awoodaha sawir-qaadista ee kala duwan

FIG 6(b) waxay is barbar dhigaysaa itimaalka awooda firfircoon ee ka badan xadka laan kasta iyada oo la raacayo awoodaha xarunta korantada ee pv ee kala duwan. Marka laga reebo laamaha ka muuqda sawirka, laamaha kale ma dhaafin xadka ama suurtogalnimada ayaa ahayd mid aad u yar. Marka la barbardhigo FIG. 6(a), waxaa la arki karaa in itimaalka xad-dhaafka ah iyo weecinta caadiga ahi aanay ahayn mid xidhiidh la leh. Awoodda firfircoon ee xariiqda leh isbedbeddelka isbedbeddelka heerka weyni maahan mid ka baxsan xadka, sababtuna waxay la xiriirtaa jihada gudbinta ee awoodda wax soo saarka sawir-qaadista. Haddii ay la mid tahay socodka korantada laanta asalka ah, tamarta yar ee sawir-qaadista ayaa sidoo kale keeni karta xad-dhaaf ah. Marka awoodda pv ay aad u weyn tahay, socodka korantadu waxaa laga yaabaa inuusan dhaafin xadka.

Gudaha FIG. 6 (c), wadarta guud ee khasaaraha shabakada nidaamka waxay kordhisaa kororka awoodda sawir-qaadista, laakiin saameyntani maaha mid cad. Marka awoodda sawir-qaadista ay kordho 60MW, wadarta khasaaraha shabakadu waxay kordhisaa kaliya 0.5%, ie 0.75 MW. Sidaa darteed, marka la rakibayo xarumaha korontada ee pv, luminta shabakadu waa in loo qaataa inay tahay arrin labaad, iyo arrimaha saamaynta weyn ku leh habsami u socodka nidaamka waa in marka hore la tixgeliyaa, sida isbeddelka korontada ee khadka gudbinta iyo suurtogalnimada ka baxsan xadka. .

3.2 Impact of energy storage access on the system

Qaybta 3.1 Booska gelitaanka iyo awoodda xarunta korantada sawir-qaadista waxay ku xiran tahay nidaamka korontada