site logo

Ukucushwa okuphelele kwesistimu yokugcina amandla esiteshini samandla e-photovoltaic ngokusekelwe emathubeni okugeleza kwamandla

Abstract Ingxenye ephezulu yokukhiqiza amandla e-photovoltaic izoba nemiphumela emibi ekuzinzeni kwesistimu yamandla, futhi ukugcinwa kwamandla kubhekwa njengenye yezindlela eziphumelelayo zokuqeda le miphumela. Leli phepha lihlaziya umthelela wokukhiqiza amandla e-photovoltaic kusistimu yamandla ngokombono wokugeleza kwamandla, bese lihlaziya umphumela wokugcinwa kwamandla ekunqandeni ithonya. Okokuqala, imodeli yokusabalalisa okungenzeka kanye nemodeli yokugcina amandla yezingxenye ohlelweni lwamandla iye yethulwa, futhi indlela yesampula ye-hypercube yesiLatini kanye nendlela yokujwayelekile yokulandelana kwe-gram-Schmidt yethulwa. Okwesibili, imodeli yokuthuthukisa enezinjongo eziningi yasungulwa, ecabangela izindleko zesistimu yokugcina amandla, amathuba angenakunqunyelwa okugeleza kwamandla egatsha kanye nokulahlekelwa kwenethiwekhi kwegridi yamandla. Isixazululo esilungile somsebenzi wenhloso sitholwe nge-algorithm yofuzo. Ekugcineni, ukulingisa kwenziwa ohlelweni lokuhlola i-IEEE24 node ukuze kuhlaziywe umthelela wokufinyelela okuhlukile kwe-photovoltaic kanye nendawo yokufinyelela ohlelweni lwamandla kanye nomthelela wokugcinwa kwamandla ohlelweni lwamandla, kanye nokulungiselelwa okuphelele kokugcinwa kwamandla okuhambisana namandla ahlukene we-photovoltaic. iyatholakala.

Amagama angukhiye i-photovoltaic power generation; Uhlelo lokugcina amandla; Ukucushwa okulungiselelwe; Amathuba okugeleza kwamandla; I-Genetic algorithm (ga)

Ukukhiqizwa kwamandla e-Photovoltaic kunezinzuzo zokuvikelwa kwemvelo okuluhlaza kanye nokuvuselelwa, futhi kubhekwa njengenye yamandla angavuseleleka kakhulu. Ngo-2020, amandla aseShayina afakiwe okukhiqiza amandla e-photovoltaic asefinyelele izigidi ezingama-253 kw. Izikhawu nokungaqiniseki kwamandla amakhulu e-PV kuthinta isistimu yamandla, okuhlanganisa nezindaba zokushefa okuphezulu, ukuzinza nokulahla ukukhanya, futhi igridi idinga ukuthatha izinyathelo ezivumelana nezimo ukuze ibhekane nalezi zinkinga. Ukugcinwa kwamandla kubhekwa njengendlela ephumelelayo yokuxazulula lezi zinkinga. Ukusetshenziswa kwesistimu yokugcina amandla kuletha isisombululo esisha sokuxhuma kwegridi ye-photovoltaic ngezinga elikhulu.

Njengamanje, kukhona ucwaningo oluningi mayelana nokukhiqiza amandla e-photovoltaic, isistimu yokugcina amandla kanye nokugeleza kwamandla okungenzeka ekhaya nakwamanye amazwe. Inani elikhulu lezifundo zezincwadi libonisa ukuthi ukugcinwa kwamandla kungathuthukisa izinga lokusetshenziswa kwe-photovoltaic futhi kuxazulule ukuzinza kokuxhumeka kwegridi ye-photovoltaic. Ekucushweni kwesistimu yokugcina amandla esiteshini esisha samandla kagesi, ukunakwa akufanele kukhokhelwe kuphela isu lokulawula ukugcinwa kwe-optical kanye nokugcinwa komoya, kodwa futhi nomnotho wesistimu yokugcina amandla. Ngaphezu kwalokho, ukuze kusetshenziswe iziteshi eziningi zamandla okugcina amandla ohlelweni lwamandla, kuyadingeka ukutadisha imodeli yezomnotho yokusebenza kweziteshi zamandla okugcina amandla, ukukhethwa kwesayithi kwendawo yokuqala kanye nokuphela kweziteshi zokudlulisa i-photovoltaic kanye ukukhethwa kwendawo yokugcina amandla. Kodwa-ke, ucwaningo olukhona mayelana nokucushwa okuphelele kwesistimu yokugcina amandla alunaki umthelela othile kusistimu yamandla, futhi ucwaningo lwesistimu ye-multi-point alubandakanyi izici zokusebenza kwesitoreji esibonakalayo esikhulu.

With the large-scale development of uncertain new energy power generation such as wind power and photovoltaic, it is necessary to calculate the power flow of the power system in the operation planning of the power system. For example, the literature studies the optimal location and capacity allocation of energy storage in the power system with wind power. In addition, the correlation between multiple new energy sources should also be considered in the calculation of power flow. However, all the above studies are based on deterministic power flow methods, which do not consider the uncertainty of new energy generation. The literature considers the uncertainty of wind power and applies the probabilistic optimal power flow method to optimize the site selection of energy storage system, which improves the operation economy.

At present, different probabilistic power flow algorithms have been proposed by scholars, and data mining methods of nonlinear probabilistic power flow based on Monte Carlo simulation method have been proposed in literatures, but the timeliness of Monte Carlo method is very poor. It is proposed in the literature to use the probabilistic optimal power flow to study the location of energy storage, and 2 m point method is used, but the calculation accuracy of this method is not ideal. The application of Latin hypercube sampling method in power flow calculation is studied in this paper, and the superiority of Latin hypercube sampling method is illustrated by numerical examples.

Based on the above research, this paper uses the probabilistic power flow method to study the optimal allocation of energy storage in the power system with large-scale photovoltaic power generation. Firstly, the probability distribution model and Latin hypercube sampling method of components in power system are introduced. Secondly, a multi-objective optimization model is established considering the energy storage cost, power flow over limit probability and network loss. Finally, the simulation analysis is carried out in IEEE24 node test system.

1. Imodeli yokugeleza kwamandla okungenzeka

1.1 Imodeli yokungaqiniseki yezingxenye

Photovoltaic, load and generator are all random variables with uncertainty. In the calculation of probabilistic power flow of distribution network, the probabilistic model is explained in the literature. Through the analysis of historical data, the output power of photovoltaic power generation follows BETA distribution. By fitting the probability distribution of load power, it is assumed that load follows normal distribution, and its probability density distribution function is

Picture (1)

Kuphi, Pl amandla okulayisha; μ L kanye no-σ L okulindelekile nokuhluka komthwalo ngokulandelanayo.

Imodeli yamathuba ejeneretha ngokuvamile yamukela ukusatshalaliswa kwamaphoyinti amabili, futhi umsebenzi wokusabalalisa wokuminyana kwamathuba

(2)

Lapho, u-P kunamathuba okusebenza okuvamile kwejeneretha; I-PG ingamandla okukhipha ijeneretha.

Uma ukukhanya kwanele emini, amandla asebenzayo esiteshi samandla e-photovoltaic makhulu, futhi amandla okunzima ukuwasebenzisa ngesikhathi azogcinwa ebhethri yokugcina amandla. Uma amandla okulayisha ephezulu, ibhethri yokulondoloza amandla izokhulula amandla agciniwe. I-equation yebhalansi yamandla esheshayo yesistimu yokugcina amandla ingu

Lapho ishaja

(3)

Lapho ukukhishwa

(4)

Umgoqo

Pictures,

Pictures,

Picture, picture

Kuphi, iSt amandla agcinwe ngesikhathi T; I-Pt amandla okushaja kanye nokukhipha amandla okugcina amandla; I-SL ne-SG amandla okushaja nokushajwa ngokulandelanayo. η C kanye no-D ziyashaja futhi zikhiphe ukusebenza kahle ngokulandelana kwazo. I-Ds izinga lokuzikhulula lokulondoloza amandla.

1.2 Indlela yesampula ye-hypercube yesiLatini

Kukhona indlela yokulingisa, indlela elinganiselwe kanye nendlela yokuhlaziya engasetshenziswa ukuhlaziya ukuhamba kwamandla esistimu ngaphansi kwezici ezingaqinisekile. Ukulingiswa kwe-Monte Carlo kungenye yezindlela ezinembe kakhulu kuma-algorithms okugeleza kwamandla okungenzeka, kodwa ukuhambisana kwayo nesikhathi kuphansi uma kuqhathaniswa nokunemba okuphezulu. Endabeni yezikhathi eziphansi zamasampula, le ndlela ivamise ukuziba umsila wejika lokusabalalisa okungenzeka, kodwa ukuze kuthuthukiswe ukunemba, idinga ukwandisa izikhathi zesampula. Indlela yokusampula ye-Latin hypercube igwema le nkinga. Kuyindlela yokulandelana yamasampula, engaqinisekisa ukuthi amaphuzu amasampula abonisa ukusabalalisa kwamathuba ngempumelelo futhi anciphise izikhathi zamasampula ngempumelelo.

Figure 1 shows the expectation and variance of Latin hypercube sampling method and Monte Carlo simulation method with sampling times ranging from 10 to 200. The overall trend of results obtained by the two methods is decreasing. However, the expectation and variance obtained by monte Carlo method are very unstable, and the results obtained by multiple simulations are not the same with the same sampling times. The variance of Latin hypercube sampling method decreases steadily with the increase of sampling times, and the relative error decreases to less than 5% when the sampling times are more than 150. It is worth noting that the sampling point of the Latin hypercube sampling method is symmetric about the Y-axis, so its expected error is 0, which is also its advantage.

Isithombe

I-FIG. 1 Ukuqhathaniswa kwezikhathi zamasampula ezihlukene phakathi kwe-MC ne-LHS

Indlela yokusampula ye-Latin hypercube iyindlela yokwenza isampula enezingqimba. Ngokuthuthukisa inqubo yokwenza isampula yokufaka okuguquguqukayo okungahleliwe, inani lesampula lingabonisa ngempumelelo ukusatshalaliswa okuphelele kokuguquguquka okungahleliwe. Inqubo yesampula ihlukaniswe ngezinyathelo ezimbili.

(1) Ukusampula

I-Xi (I = 1, 2,… ,m) ingu-m eziguquguqukayo ezingahleliwe, futhi izikhathi zesampula zingu-N, njengoba kuboniswe ku-FIG. 2. Ikhevu yokusabalalisa yamathuba akhulayo we-X ihlukaniswa ngesikhawu esingu-N ngesikhala esilinganayo futhi akukho ukugqagqana, indawo emaphakathi yesikhawu ngasinye ikhethwa njengevelu yesampula yamathuba angu-Y, bese kuba inani lesampula elithi Xi= p-1 (Yi) ibalwa ngokusebenzisa umsebenzi ophambene, futhi i-Xi ebaliwe iyinani lesampula lokuhluka okungahleliwe.

Isithombe

Umfanekiso 2 womdwebo we-LHS

(2) Izimvume

Amanani esampula okuguquguquka okungahleliwe atholwe ku-(1) ahlelwa ngokulandelana, ngakho ukuhlobana phakathi kuka-m okuguquguqukayo okungahleliwe kungu-1, okungenakubalwa. Indlela ye-gram-Schmidt yokulandelana kwe-orthogonalization ingatholwa ukuze kuncishiswe ukuhlobana phakathi kwamanani esampula okuguquguquka okungahleliwe. Okokuqala, i-matrix ye-oda ye-K×M I=[I1, I2…, IK]T iyakhiqizwa. Ama-elementi kumugqa ngamunye ahlelwa ngokungahleliwe ukusuka ku-1 kuye ku-M, futhi amelela indawo yenani lesampula lokuhluka okungahleliwe kwasekuqaleni.

Ukuphindaphinda okuhle

Isithombe

Ukuphindaphinda okuhlanekezelwe

Isithombe

“Isithombe” simele isabelo, ukukhipha(Ik,Ij) simele ukubalwa kwenani eliyinsalela ekuhlehleni komugqa Ik=a+bIj, izinga(Ik) limelela i-vector entsha eyakhiwe inombolo yokulandelana kwezakhi ku-orientation Ik ukusuka kwencane kuye enkulu.

Ngemva kokuphindaphinda okukabili kuze kube inani le-RMS elingu-ρ, elimele ukuhlobana, linganciphi, indawo ye-matrix yokushintshashintsha okungahleliwe ngakunye ngemva kokutholwa kwemvume, bese kutholwa i-matrix yokuvumela okuguquguqukayo okungahleliwe nokuhambisana okuncane kakhulu.

(5)

Where, the picture is correlation coefficient between Ik and Ij, cov is covariance, and VAR is variance.

2. Ukumiswa kwezinhloso eziningi zohlelo lokugcina amandla

2.1 Objective function

Ukuze kukhuliswe amandla nomthamo wesistimu yokugcina amandla, umsebenzi wokuthuthukisa izinhloso eziningi uyasungulwa kucatshangelwa izindleko zesistimu yokugcina amandla, amathuba okuvalwa kwamandla kanye nokulahlekelwa kwenethiwekhi. Ngenxa yobukhulu obuhlukene benkomba ngayinye, ukusimamisa ukuchezuka kuyenziwa kunkomba ngayinye. Ngemva kokuchezuka kokulinganisa, ububanzi bevelu bamanani abukiwe wokuhlukahluka okuhlukahlukene buyoba phakathi kuka-(0,1), futhi idatha emisiwe amanani amsulwa angenawo amayunithi. Esimweni sangempela, kungase kube khona umehluko ekugcizeleleni kunkomba ngayinye. Uma inkomba ngayinye inikezwa isisindo esithile, ukugcizelela okuhlukene kungahlaziywa futhi kufundwe.

(6)

Lapho, u-w inkomba ezothuthukiswa; I-Wmin ne-wmax ubuncane nobuningi bomsebenzi wasekuqaleni ngaphandle kokumiswa.

Umsebenzi wenhloso ngu

(7)

Kufomula, λ1 ~ λ3 ama-coefficients esisindo, i-Eloss, i-PE ne-CESS ukulahleka kwenethiwekhi yegatsha okujwayelekile, amathuba okuwela amandla egatsha asebenzayo kanye nezindleko zokutshala imali zokugcinwa kwamandla ngokulandelanayo.

2.2 Genetic algorithm

I-Genetic algorithm iwuhlobo lwe-algorithm yokwenza kahle esungulwe ngokulingisa imithetho yofuzo neyokuziphendukela kwemvelo yokuphila kwabanamandla kanye nokuphila kwabanamandla kunawo wonke emvelweni. Okokuqala ukufaka amakhodi, inani labantu bokuqala ngamunye ubhala amakhodi egameni lomuntu (isixazululo esingenzeka senkinga), ngakho isisombululo ngasinye esingaba khona sisuka ekuguquleni i-genotype phenotype, ukukhetha ngokuvumelana nemithetho yemvelo yomuntu ngamunye, futhi kukhethwe isizukulwane ngasinye kuya esizukulwaneni esilandelayo semvelo yekhompyutha ukuzivumelanisa nomuntu onamandla, kuze kube yilapho evumelana nezimo kakhulu endaweni yomuntu ngamunye, Ngemva kokukhipha amakhodi, yisixazululo esilinganisiwe senkinga.

In this paper, the power system including photovoltaic and energy storage is firstly calculated by the probabilistic power flow algorithm, and the obtained data is used as the input variable of the genetic algorithm to solve the problem. The calculation process is shown in Figure 3, which is mainly divided into the following steps:

Isithombe

FIG. 3 Algorithm flow

(1) Input system, photovoltaic and energy storage data, and perform Latin hypercube sampling and Gram-Schmidt sequence orthogonalization;

(2) Faka idatha eyisampula kumodeli yokubala ukugeleza kwamandla futhi urekhode imiphumela yokubala;

(3) The output results were encoded by chromosome to generate the initial population corresponding to the sampling value;

(4) Calculate the fitness of each individual in the population;

(5) khetha, weqe futhi uguqule ukukhiqiza isizukulwane esisha sabantu;

(6) Yahlulela ukuthi izidingo ziyafinyelelwa yini, uma kungenjalo, isinyathelo sokubuyisela (4); Uma kunjalo, isixazululo esilungile siphuma ngemuva kokukhishwa kwamakhodi.

3. Ukuhlaziya isibonelo

Indlela yokugeleza kwamandla okungenzeka ilingiswe futhi ihlaziywe kusistimu yokuhlola yenodi ye-IEEE24 eboniswe ku-FIG. 4, lapho izinga le-voltage lama-node angu-1-10 lingu-138 kV, futhi le-11-24 nodes lingu-230 kV.

Isithombe

Figure 4 IEEE24 node test system

3.1 Umthelela wesiteshi samandla e-photovoltaic ohlelweni lukagesi

Isiteshi samandla se-Photovoltaic ohlelweni lwamandla, indawo kanye nomthamo wesistimu yamandla kuzothinta i-node voltage namandla egatsha, ngakho-ke, ngaphambi kokuhlaziywa kwethonya lesistimu yokugcina amandla yegridi yamandla, lesi sigaba sihlaziya kuqala ithonya lamandla we-photovoltaic. isiteshi ohlelweni, ukufinyelela kwe-photovoltaic ohlelweni kuleli phepha, ukuthambekela komkhawulo wamathuba, ukulahlekelwa kwenethiwekhi nokunye kuye kwaqhubeka nokuhlaziywa kokulingisa.

As can be seen from FIG. 5(a), after photovoltaic power station is connected, nodes with smaller branch power flow overlimit are as follows: 11, 12, 13, 23, 13 to balance the node node, the node voltage and the phase Angle is given, have the effect of stable power grid power balance, 11, 12 and 23 instead of directly connected, as a result, several nodes connected to the limit the probability of smaller and more power, photovoltaic power station will access the node with balance effect is less on the impact of power system.

Isithombe

Umfanekiso 5. (a) isamba sokugeleza kwamandla ngaphandle komkhawulo wamathuba (b) ukushintshashintsha kwenodi kagesi (c) isamba sokulahlekelwa kwenethiwekhi yesistimu yamaphoyinti okufinyelela e-PV ahlukene

Ngaphezu kokudlula kokugeleza kwamandla, leli phepha libuye lihlaziye umthelela we-photovoltaic ku-voltage ye-node, njengoba kuboniswe ku-FIG. 5(b). Ukuchezuka okujwayelekile kwama-voltage amplitudes ama-node 1, 3, 8, 13, 14, 15 no-19 akhethiwe ukuze aqhathanise. Sekukonke, ukuxhumeka kweziteshi zamandla e-photovoltaic kugridi yamandla akunalo ithonya elikhulu ku-voltage yama-node, kodwa iziteshi zamandla e-photovoltaic zinethonya elikhulu ku-voltage ye-a-Nodes nama-node abo aseduze. Ngaphezu kwalokho, ohlelweni olwamukelwe isibonelo sokubala, ngokuqhathanisa, kutholakala ukuthi isiteshi samandla e-photovoltaic sifaneleka kakhulu ukufinyelela izinhlobo ze-node: ① ama-node anezinga eliphezulu le-voltage, njenge-14, 15, 16, njll., i-voltage cishe ayishintshi; (2) ama-node asekelwa amajeneretha noma amakhamera alungisayo, njenge-1, 2, 7, njll.; (3) emgqeni ukumelana kukhulu ekugcineni kwe-node.

Ukuze uhlaziye umthelela wephoyinti lokufinyelela le-PV ekulahlekeni okuphelele kwenethiwekhi yesistimu yamandla, leli phepha lenza ukuqhathanisa njengoba kuboniswe kuMfanekiso 5(c). Kungabonakala ukuthi uma amanye ama-node anamandla amakhulu okulayisha futhi engekho amandla axhunywe esiteshini samandla se-pv, ukulahlekelwa kwenethiwekhi yesistimu kuzoncishiswa. Ngokuphambene nalokho, ama-node 21, 22 kanye no-23 ayisiphetho sokuphakelwa kukagesi, esibhekele ukudluliswa kwamandla okumaphakathi. Isiteshi samandla e-photovoltaic esixhunywe kulawa ma-node sizobangela ukulahlekelwa okukhulu kwenethiwekhi. Ngakho-ke, indawo yokufinyelela esiteshini samandla e-pv kufanele ikhethwe ekugcineni kwamandla noma indawo enomthwalo omkhulu. Le modi yokufinyelela ingenza ukusatshalaliswa kokugeleza kwamandla kwesistimu kulingane futhi kunciphise ukulahlekelwa kwenethiwekhi kwesistimu.

Ngokusekelwe ezicini ezintathu ekuhlaziyweni kwemiphumela engenhla, i-node 14 ithathwa njengendawo yokufinyelela yesiteshi samandla e-photovoltaic kuleli phepha, bese kufundwa ithonya lamandla eziteshi zamandla e-photovoltaic ezahlukene ohlelweni lwamandla.

Figure 6(a) analyzes the influence of photovoltaic capacity on the system. It can be seen that the standard deviation of the active power of each branch increases with the increase of photovoltaic capacity, and there is a positive linear relationship between the two. Except for several branches shown in the figure, the standard deviations of other branches are all less than 5 and show a linear relationship, which are ignored for the convenience of drawing. It can be seen that photovoltaic grid connection has a great influence on the power of directly connected with photovoltaic access point or adjacent branches. Because of limited power transmission line transmission, the transmission lines of quantities of construction and investment is huge, so installing a photovoltaic power station, should consider the limitation of transportation capacity, choose the smallest influence on line access to the best location, in addition, selecting the best capacity of photovoltaic power station will play an important part to reduce this effect.

Isithombe

Umfanekiso 6. (a) Ukuchezuka okujwayelekile kwamandla egatsha asebenzayo (b) ukugeleza kwamandla egatsha ngaphandle komkhawulo emathubeni (c) ukulahleka okuphelele kwenethiwekhi yesistimu ngaphansi kwamandla ahlukene we-photovoltaic

I-FIG. 6(b) iqhathanisa amathuba amandla asebenzayo eqa umkhawulo wegatsha ngalinye ngaphansi kwamakhono ahlukene esiteshi samandla se-pv. Ngaphandle kwamagatsha aboniswe esithombeni, amanye amagatsha awazange adlule umkhawulo noma amathuba ayemancane kakhulu. Uma kuqhathaniswa neFIG. 6(a), kungase kubonakale ukuthi amathuba okuthi ungeqi komkhawulo kanye nokuchezuka okujwayelekile akuhlobene ngempela. Amandla asebenzayo olayini onokuguquguquka okukhulu okujwayelekile akuvimbeli, futhi isizathu sihlobene nesiqondiso sokudlulisa amandla okukhipha amandla e-photovoltaic. Uma isendaweni efanayo nokugeleza kwamandla egatsha langempela, amandla amancane e-photovoltaic angase abangele nokunganqunyelwe. Uma amandla e-pv emakhulu kakhulu, ukugeleza kwamandla kungase kungeqi umkhawulo.

In FIG. 6(c), the total network loss of the system increases with the increase of photovoltaic capacity, but this effect is not obvious. When the photovoltaic capacity increases by 60 MW, the total network loss only increases by 0.5%, i.e. 0.75 MW. Therefore, when installing pv power stations, network loss should be taken as a secondary factor, and factors that have a greater impact on the stable operation of the system should be considered first, such as transmission line power fluctuation and out-of-limit probability.

3.2 Umthelela wokufinyelela kwisitoreji samandla ohlelweni

Isigaba 3.1 Indawo yokufinyelela namandla esiteshi samandla e-photovoltaic sincike ohlelweni lwamandla